Ethernet EVB

Ethernet Experimentation & Evaluation Board

HX1188NL
1121PP CHINA | o

Gl (o] g coso ATRARAL & Svwwwd,

o €189 . 136
o %
R

170
RIBY
934 =

03CPUB LEDI

T
5 D4 03 06

g
PUB Bootd

ImrepldCS.com

Intrepid Ethernet EUB

CAN_B_ TERMINATION,

PINS 2-3

Lab Manual

Version 1.0 - August 3, 2015

Intrepid Control Systems, Inc. .
31601 Research Park Drive Madison Heights, Ml 48071 USA automotive encineering /7.
(ph) +1-586-731-7950 (fax) +1-586-731-2274 toolalliance

www.intrepidcs.com www.aeta-rice.com

Ethernet EVB Lab Manual

Table of Contents

Introduction to the Intrepid Ethernet EVB Lab Manual.........................cccooo i, 1
Section 1 Basic Ethernet Traffic Analysis and Frame Transmissionc.cccooiiiiiiinnne 6
Lab 1.1 Analyzing Ethernet Traffic Using Vehicle Spy 3.......ooo e 7
Lab 1.2 Making Use of Advanced Vehicle Spy 3 Analysis Functionality............ccccoiiiiiiiiiii i, 19
Lab 1.3 Using the Messages Editor and a Function Block Script to Transmit Raw Ethernet Frames........ 28
Lab 1.4 Reviewing and Modifying Ethernet Templates and Setup FileS..........cccccoviiiiiiiic i, 42
Lab 1.5 Setting Up a Transmission and Response Exchange Using Ethernet Framescccceee. 48
Lab 1.6 Adding Intelligence and Control to Ethernet Transmission and Response Exchanges................. 54
Section 2 Experiments with the TCP/IP Address Resolution Protocol (ARP) Over Ethernet59
Lab 2.1 ODbSErviNg ARP IN ACHONeiiiiiiiiiiee ettt e et e e e st e e e s sn e e e e e anbeeeeesannsaeeaeans 61
Lab 2.2 Sending Periodic ARP Requests from EEVB NOde A...........ooiiiiiiiiiiiiiiiiiee e 67
Lab 2.3 Using Application Signals to Set up an Intelligent ARP Request/Reply Exchange........................ 73
Lab 2.4 Controlling ARP Request and Reply Operation Using EEVB INputscoooviiiiiiiiiiiiec e 78
Lab 2.5 Setting Up an ARP Request/Reply Exchange Between the EEVB and PCcccccoeeiviiiieee, 84
Lab 2.6 Manual ARP Request from PC to EEVB Using RAD-Moon (Optional)........ccccccevviiiiieiiiiiiee e, 88
Section 3 Simulations Using TCP/IP Internet Protocol (IP) and Internet Control Message

ProtocCol (ICMP) MESSAQEScoooiiiiiiieie ettt ene e 96
Lab 3.1 Examining IP and ICMP Messages and Some Common Network Utilitiesccccooieieinnnen. 99
Lab 3.2 Creating and Transmitting Custom IP Datagramscoocuiiiiiiiiiiiieiiiieee e 109
Lab 3.3 Using Signal Lists and Plots to Display Data and Adding a Second Simultaneous

CoreMini Script for Node Synchronization..............occueeiioiiiiiiio e 115

Lab 3.4 Simulating the Ping Utility and Monitoring Ping Exchanges Using a Graphical Panel 125
Lab 3.5 Manual Ping from PC to EEVB UsSiNg RAD-MOONccuiiiiiiiiiiie e 132
Lab 3.6 Simulating a Routing Problem with ICMP Time Exceeded MesSSagescccoeeecvvvvviiieireeeeeennn. 136
Section4 TCPI/IP User Datagram Protocol (UDP) and Transmission Control Protocol

(TCP) Data EXChanQ@es..............ccooiiiiiiiiiiicceeeee et 141
Lab 4.1 Analyzing UDP and TCP Messages and Exploring the TCP Column Display.........c..ccccceeeeennnee. 146
Lab 4.2 Transmitting Input/Output Data USiNg UDPooiiiiiiiiieiiee e 160
Lab 4.3 Creating a Simple Custom UDP Message Exchange Protocolcccccceeviiiiiiiiiiiee e 167
Lab 4.4 Simulating TCP Connection Establishment and Terminationcccccciiiiiiiiiii i 175

Version 1.0 - August 3, 2015 i © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Introduction to the Intrepid Ethernet EVB Lab Manual

Welcome to the Lab Manual for the Intrepid Control Systems (ICS) Ethernet Experimentation
and Evaluation Board, which for convenience is abbreviated as the Ethernet EVB or just
EEVB. This document contains about two dozen hands-on, detailed tutorials that demonstrate
the operation of both the EEVB hardware and Vehicle Spy 3 (VSpy) software. Following the
step-by-step instructions in these experiments, which we call /abs, will help you learn about the
operation of Automotive Ethernet and the TCP/IP protocols that run on it.

About the Ethernet EVB Lab Manual and User’s Guide

As you may already know, the EEVB is supported by a pair of documents rather than just one.
The EEVB User’s Guide describes the EEVB in detail, outlining its components and features,
and providing instructions for installing and setting up the board and Vehicle Spy 3. It also
contains troubleshooting information to help you deal with problems that may arise when
dealing with the product. The Lab Manual, as mentioned above, contains detailed experiment
tutorials that let you really dig into using the board.

To help you make the most of your time, the Lab Manual was written assuming that you

have already read through the User’s Guide. If for some reason you have come here first,

we recommend referencing that document before proceeding. It's not necessary to read
everything cover to cover, but please be sure to at least follow the instructions necessary to get
your hardware and software installed and working correctly before you try these labs.

There is also a special demo in the User’s Guide that helps verify correct operation of your
EEVB setup, and also serves as a nice preview of the procedures you’ll find in the Lab Manual.
As part of this demo you will create a logon name in Vehicle Spy 3, which must be done in
order to set up a data directory. The Lab Manual assumes that you have already followed the
instructions for this demo and run it, and so that this data directory (“EEVB”) already exists.
One of the later labs also builds upon this demo.

Organization of the Lab Manual

The introduction you are reading right now describes the Lab Manual itself and includes a few
important topics you'll want to understand before proceeding with the experiments themselves.
The labs are broken into four sections, each with several numbered labs. Here’s a summary of
the lab sections:

1. Basic Ethernet Traffic Analysis and Frame Transmission: Provides an introduction
to Vehicle Spy 3 and the Ethernet EVB. You'll learn how to capture and analyze
Ethernet traffic, define custom Ethernet messages, and create simple scripts to allow
message exchanges between the two EEVB nodes.

2. Experiments with the TCP/IP Address Resolution Protocol (ARP) Over Ethernet:
A set of labs oriented around ARP, which, due to its simplicity, is an ideal place to
begin exploring TCP/IP over Automotive Ethernet. You'll set up an ARP request/reply
exchange, and learn how to send and receive messages between the PC and EEVB.

Version 1.0 - August 3, 2015 1 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

3. Simulations Using TCP/IP Internet Protocol (IP) and Internet Control Message
Protocol (ICMP) Messages: In this section we move into more advanced experiments
that illustrate the operation of IP and ICMP, two essential TCP/IP protocols. This
includes simulations of the popular ping utility and a message routing scenario.

4. TCPI/IP User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)
Data Exchanges (Coming Soon): Here we explore TCP/IP’s two main Transport Layer
protocols, looking at data transfer over UDP and connection establishment with TCP.

The Lab Manual contains over 100 figures to help you understand exactly what is going on as
you proceed. Action items, meaning steps where you need to actively do something, are set
apart from the rest of the text for greater visibility using a right-facing pointer character (“»”).

How to Get the Most of the Lab Manual

We recommend doing the labs in the order they are listed in the manual. One reason is that
to avoid repetition, the fundamentals of using the hardware and software are covered in more
detail earlier in the Lab Manual, and we assume you have these basics down by the time you
get further into the document. In addition, the lab sections build upon each other logically; for
example, UDP and TCP (section 4) both use IP (section 3).

The EEVB also comes with a complimentary copy of ICS’s book Automotive Ethernet - The
Definitive Guide (Figure 1). This 1,100+ page reference provides a thorough description of
Automotive Ethernet, as well as a comprehensive description of TCP/IP protocols. Each
section of the Lab Manual begins with an overview of the protocols introduced and used within
that section. However, of necessity, these are quite brief. If you are new to TCP/IP or want to
know more about protocols such as ARP, IP, ICMP, UDP and TCP as you make use of them in
this manual, be sure to use the book as a resource!

Figure 1: Automotive Ethernet - The Definitive Guide. Intrepid’s industry-leading book will help you understand the
technologies used in Automotive Ethernet.

Version 1.0 - August 3, 2015 2 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Optional RAD-Moon Labs

Some of the experiments in the Lab Manual make use of the ICS RAD-Moon media converter
(Figure 2), which connects conventional and BroadR-Reach Ethernet networks. Please

try these labs if you have purchased the bundle containing the EEVB and RAD-Moon, or
purchased the converter separately; they will show you some of what you can do with the
combination of these two Automotive Ethernet devices. If you don’t have a RAD-Moon, these
optional labs can be readily skipped, as other labs are designed to be independent of them.

Figure 2: Intrepid RAD-Moon. The RAD-Moon is an inexpensive media converter that allows conventional Ethernet and
Automotive Ethernet devices and networks to be connected directly to each other.

Online Setup Files

Many of the labs make use of Vehicle Spy 3 setup files (also known as .VS3 files) that have
been specially prepared in advance for you to save time. We have collected all of these setup
files into a single zip file that you can download and unzip into your data directory, so they will
be available when needed by specific labs as you progress through the manual. These files
should be placed into the data directory corresponding to the logon name you created when
doing the demo in the EEVB User’s Guide. By default, the logon name should be EEVB, and
the full path to the data directory C:\IntrepidCS\Vehicle Spy 3\Data Directory\EEVB.

Please follow these steps to download the setup files and prepare them for use:

» Download Setup Zip File: If you are reading this in electronic form, you can simply
click this Web link to download the EEVB zip file to your PC: http://www.intrepidcs.com/

Version 1.0 - August 3, 2015 3 © 2015 Intrepid Control Systems, Inc.

http://www.intrepidcs.com/ae/eevb/eevb_lab_manual_setup_files.zip

Ethernet EVB Lab Manual

ae/eevb/EEVB_Setup_Files.zip. Otherwise, please enter the address into your browser.
Save the file to the desktop or another convenient location.

» Unzip the File to Your VS3 Data Directory: Open the folder where you saved the zip
file, right-click it, and select Extract AlL_ (Figure 3). Enter the correct data directory
folder location, as seen in Figure 4, which assumes the default mentioned above. Then
either press Enter or click [_Btrset .

i Fie Edit View Took Help

Organize « =3 Open ~ Share with « E-mail Burn Mew folder

.0 Favorites EEVB_setup_files.zip

B Desktop
& Downloads
5 Recent Places

Open
Browse With Paint Shop Pro 7

= Open in new window
| OneDrive i

Esctract Al
Add to Archive_

Add to EEVB_setup_file

Figure 3: Extracting the EEVB Setup Files. Right-click the downloaded zip file to begin the extraction process.

|
@ | 1 Extract Compressed (Zipped) Folde

Select a Destination and Extract Files

Filez will be extracted to this folder:
CihIntrepid C5\Wehicle Spy 3\Data Directen®\EEVE

Show extracted files when complete

Figure 4: Selecting a Data Directory Target Folder. Select the folder for your data directory, which by default will be C:\
IntrepidCS\Vehicle Spy 3\Data Directory\EEVB.

Your setup files should now be ready to use.

Version 1.0 - August 3, 2015 4q © 2015 Intrepid Control Systems, Inc.

http://www.intrepidcs.com/ae/eevb/eevb_lab_manual_setup_files.zip

Ethernet EVB Lab Manual

Online Resources

Intrepid maintains a special area of its website dedicated to the Ethernet EVB, located at
http:www.intrepidcs.com/ae/eevb. In addition to the setup files we just discussed, you can also
find additional information about the EEVB there, including the latest versions of the EEVB
User’s Guide and Lab Manual.

Need Help?

If you are experiencing difficulty with your EEVB or Vehicle Spy 3 setup, please first try some
of the relevant suggestions in the Troubleshooting section of the User’s Guide. If this does not
resolve your problem, or if you need help with any of the directions in this Lab Manual, please
feel free to contact ICS by phone or email using the following contact information:

e Phone: (800) 859-6265 or (586) 731-7950, extension 1.
e Fax: (586) 731-2274.
e Email: icssupport@intrepidcs.com

Intrepid’s normal support hours are from 8 am to 5 pm, Monday to Friday, United States
Eastern time. If you contact us outside standard business hours, a member of our support
team will get back to you as soon as possible.

Feedback Welcomed!

Comments? Complaints? Compliments? Whatever feedback you may have about the Ethernet
EVB Lab Manual, we want to hear it! Feel free to e-mail us any time using the special address
eevb@intrepidcs.com, and you'll receive a personalized response, usually within one business
day.

Version 1.0 - August 3, 2015 5 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Section 1 Basic Ethernet Traffic Analysis and Frame

Transmission

With the preliminaries out of the way, we're ready to get down to business! In this first section
of the Lab Manual we’ll start using Vehicle Spy 3 to work with both conventional Ethernet traffic
and messages sent by the Ethernet EVB.

In this section you will do the following:

Learn how to use Vehicle Spy 3 to monitor regular Ethernet traffic.

Gain a better understanding of how Ethernet messages are displayed and formatted in
VSpy’s Messages View.

Examine the layer details in a TCP/IP message.

Explore some of VSpy’s more advanced analysis features.

Set up transmit and receive messages in Vehicle Spy 3.

Create function block scripts to be converted to CoreMinis for the EEVB.

Demonstrate both basic transmission and a transmit/receive exchange using “raw”
Ethernet frames.

Discover how to modify existing setups to enhance their capabilities.

Learn how to have manual input from the EEVB control script operation.

As mentioned earlier, since this is the first section, more detail will be provided in the steps

for each lab here. Some of the specifics, such as how to go online or send a CoreMini to the
Ethernet EVB, will be skipped in subsequent sections since by then you will already know how
to do them.

Note: This section provides basic instructions on the Vehicle

Spy 3 features needed to go through the Lab Manual. For a full
description of this powerful and complex software, please refer to
the separate Vehicle Spy 3 documentation. Also remember that
VSpy has a handy help system you can access at any time by
pressing the F1 key. There are also tutorials you can access directly
from the Logon Screen.

Version 1.0 - August 3, 2015 6 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.1 Analyzing Ethernet Traffic Using Vehicle Spy 3

It may seem a bit surprising that we will begin the Ethernet EVB Lab Manual with a tutorial that
doesn’t actually use the EEVB. There are two reasons why we designed the manual this way.
The first is that looking at regular Ethernet traffic is simpler than using the EEVB, and simpler
is always better when starting out. The second is that we want to underscore for you the most
important features of Vehicle Spy 3 for Ethernet message capture and analysis, which can be
used with or without the EEVB.

For this lab, please ensure that the PC you are using is connected to either the Internet or an
internal network so that there will be Ethernet traffic to monitor and examine.

Part 1.1A Working with the Ethernet Interfaces List in VSpy
Let’s start by getting Vehicle Spy 3 up and running.

» Start Vehicle Spy 3: Select ks Vehicle 5py 3 from the Windows Start Menu, or click the k=
icon on your desktop. The program will start within a couple of seconds, beginning at
the Logon Screen (Figure 5).

Vehicle Spy — Elﬁlg
T
File Setup Spy Metworks Measurement Embedded Teels Scripting and Automation Run Teols Help
[~ | offline C PIathrm:i(None) v] (& Desktop 1 4, Data |~
Logon Name Setup DatalLogger x o
w
Current Platform [({l41)] -

Recent | My Setups | Examples
Name Location
|=|Ethernet EVE Input Output C:\IntrepidCS\Vehicle Spy 3\Data Directory\EEVB\Ethernet EVB Input Output.vs3

Tutorials B9 Configure Hardware... Refresh Ethernet Interfaces

8 | Vehicle Network Interface Packets/s Total Ethernet MNe...
W Ethernet EVB EE0002 (Node A) @ 20 141 Intrepid E...
2 || Ethernet EVB EE0003 (Mode B) P 33 186 Local Are...

? Tutorial 1 : Basics of Vehicle Spy
? Tutorial 2 : Transmitting Messages
? Tutorial 3 : Decoding Signal Data
More Tutorials...

B

Copyrighted and licensed by Intrepid Control Systems, Inc.
www.intrepidcs.com

A

3.7.0.86 Professiona

No Bus Errors

Figure 5: Vehicle Spy 3 Logon Screen. This is a typical view of VSpy after first starting the program. [A: Ethernet interfaces
list. B: EEVB hardware nodes. C: Online/offline control buttons.]

Version 1.0 - August 3, 2015 7 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

On the bottom right of the display you should see a listing of the network connections on

the PC upon which VSpy is running (Figure 5, label A; from here out we will simplify such
references using the form “Figure 5:A”). Note that although these are called “Ethernet
interfaces”, all wired and wireless network connections on the computer will be shown,
including Wi-Fi (IEEE 802.11) and Bluetooth as well. Vehicle Spy 3 can examine traffic from all
of these sources, treating them the same as it would conventional wired Ethernet links.

-

Note: If you do not see any network interfaces listed on the

logon screen, you probably do not have Ethernet support turned
on in Vehicle Spy 3. Please refer to the User’s Guide for instructions
on how to enable it.

In the bottom center of the Logon Screen you will see a list of Intrepid hardware devices that
have been recognized by VSpy (area B in Figure 5, or Figure 5:B). You should have your
EEVB connected and powered on, and so should see an image of the board here. You will also
see listed two Ethernet EVB entries, one per EEVB node, followed by the two nodes’ serial
numbers (which begin with “EE”, as seen in Figure 5) and their node designations (“Node A”

and “Node B”).

A vertical divider separates the list of Intrepid hardware devices and the list of Ethernet
interfaces. If you are using a relatively small display, you may find that the Ethernet interface
descriptions are truncated to very short strings, while there is some extra space in the list of
EEVB nodes. You can make the interface descriptions a bit easier to read by changing the
position of the divider.

» Resize the Ethernet Network Interface Display: Hover the mouse over the vertical
divider until the resize cursor (+|+) appears. Click the divider, then drag it left and release
to make the Ethernet interfaces list wider (Figure 6). Of course, you can also slide it to
the right if you prefer.

Wehicle Metwark Interface Packetz/s Total Ethernet Me. ..
+ Ethernet EVB EE0002 (Mode A) L) 20 179 Intrepid E...
Ethernet EVB EED0OO3 (Mode B) : a7 941 Local Are...
WYehicle Metwark, Interface Packets/s Tatal Ethernet Metwork. ..
+ Ethernet EVB EE0002 (Mode &) | @ 20 681 Intrepid Ether...
Ethernet EVB EED0O3 (Mode B) 86 1367 Local Area Co...

Figure 6: Resizing the Ethernet Interfaces List. This is what the list looks like before (above) and after (below) moving the
vertical divider.

Notice the two columns on the left side of the Ethernet interface list. The Packets/s column
shows approximately how many messages are being received on the interface each second,
while Total counts all messages seen by Vehicle Spy 3, either since it was started, or since
the list was refreshed. The [Refresh Ethernet Interfaces| button can be used to tell Vehicle Spy 3 to

Version 1.0 - August 3, 2015 8 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

look for new network connections that have been added since the program ran, or to reset the
packet count.

» Refresh the Ethernet Interfaces List: Click |Refresh Ethernet Interfaces).

Notice that the packet counts of all interfaces are reset to zero, and then they begin counting
up again.

Part 1.1B Selecting an Ethernet Interface to Monitor

It is now time to select an Ethernet interface to look at in Vehicle Spy 3. This is done simply
by clicking the radio button (/@) to the left of the desired interface. To ensure that we are able
to look at lots of frames, we want to pick the most active interface on the list. Note that for the
purposes of this exercise we do not want to select the Ethernet EVB itself—even if it is in fact
the most active—but rather a regular network connection. This will usually be the one over
which the PC connects to the Internet, and many PCs will have only one interface showing
traffic at any given time.

> Select the Most Active Regular Ethernet Interface: Examine the Ethernet
interfaces list and select the (non-EEVB) one with the most packet traffic by clicking its
corresponding radio button (Figure 7).

Packetz/z Tatal Ethernet Metwark,...
: 20 324 Intrepid Ether...
@ 36 1320 Local Area Co...

Figure 7: Selecting the Active Standard Ethernet Interface. At the time this screenshot was taken, the standard Ethernet
port on this computer was receiving 36 Ethernet packets per second. (Note that the EEVB interface shows 20 packets per
second because it is running the Ethernet EVB Input Output demo from the User’s Guide, which tells each node to transmit a
data message every 100 milliseconds.)

Part 1.1C Going Online with Vehicle Spy 3

It's now time to tell Vehicle Spy 3 to start showing us the traffic on the Ethernet interface we
selected.

» Go Online: Press the [M button located near the top left of the Logon screen. You can
also press the =% | button found just below it (Figure 5:C).

Vehicle Spy 3 will automatically switch to Messages View and begin displaying the Ethernet
traffic found on the selected interface. (If for some reason the view does not change, simply
select Messages from the Spy Networks menu.) You should see a display similar to Figure 8.
Notice that the [button has changed to the [(Stop) button.

Version 1.0 - August 3, 2015 9 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

New Spy Setup - Vehicle Spy ‘ EIM
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Bun Tocols Help
T+ onfine (Coran ey [
.~ online (Coremini active)... =] (] [F4] piattorm nvone %[] @ Pestop A pata -
ava Messages Editor [E2 | @ Message: [E5) i
[iFiter | [==Add | [& scol | [) petails | [#Expand @ [&T Time Abs|[M Pause || B save | [X Erase] Find:E =
" Count Time Tx |Er |#] Description ArbId/Header Len |DataBytes Networ
% x zl =} /H ¥
Filter
= oo Messages .
= 7 1ps Ethernet 173.194.207.189 to.. 173.194.207.18...115 EC F4BB 6E 01 3C 00 90 A3 CD.. Etherne
Custom 1
“'-}"’ 1 Ethernet 173.194.68.139 to ... 173, 194,68, 189..,115 EC F4BB 6E 01 3C 00 90 A3 CD.. Etherne
Custom 2 eie 3.023768 5 Ethernet 192.168.1.1to 255... 192.168.1.1:46... 215 FF FF FF FF FF FF 00 50 A CD...Etherne. |
Custom 3 el Ethernet 192.168.1.116 to 1... 192.168.1.116:... 53 0090 A3 CD D2 26 EC F4 BB &E.. Etherne
Custom 4 “3\'?'“ 4 120,533 ms Ethernet 192.168.1.116 to 1...192.168.1.116:... 54 0090 A3 CD D2 26 EC F4 BB &E.. Etherne
.
Custom 5 "5'?'“ 1 Ethernet 192.168.1.116 to 1...192,168.1.116:... 54 00 90 A3 CD D2 25 EC F4 BB &E.. Etherne
Custom & "5\;‘“ 57.199 ms Ethernet 192,168.1.116 to 1...192.168.1.118:... 54 00 30 A3 CD D2 26 EC F4 BB &E.. Etherne
' Ethernet 192.168.1.116 to 2... 192.168.1.116:... 55 00 90 AS CD D2 26 EC F4 BB &E.. Etherne| *
= kgl Data Types
' 1 Ethernet 192.168.1.116 to 8... 192.168.1.116:... 54 00 90 AS CD D2 26 EC F4 BB &E.. Etherne|
MNetwork
2 1 Ethernet 192.168.1.145 to 2... 192, 168.1.145:... 139 0100 5E 7F FF FA 48 58 39 5A... Etherne .
@) Transmit eia 867 s Ethernet 199.16.156.52 to 1... 199.16,156.52:... 312 EC F4B8 6E 01 3C 00 90 A3 CD.. Etherne
@) Errors p 2 1 Ethernet 80.69.129.123 to 1...80.69,129.123:... 247 EC F4BB 6E 01 3C 00 90 A3 CD.. Etherne|
Changing — < [3 *
Mo Match = = "
Details for "Ethernet 172.194.207.189 to 192.168.1.116'
.
Completed Msg Message on Ethernet frof| name Value EC F4 BE 6E 01 3C 00 90 ...n.<. *
=) 2 Netwarks = Ethernet, Src: WesternD | 23 CD D2 26 02 00 45 20 ...&5..E
neovl I”ter”et_Pr_Utocol Version 00 65 34 3C 00 00 2C 06 .ed<.., |= .
Transmission Control Pra - T
Ethernet 1L 9B AD C2 CF BD CO B8
01 74 01 BB E8 23 E9 B3 .t...#¥. — .
56 BA EB 97 L6 S0 50 18 WV..... B
05 5D B7 30 00 00 17 03 .].0...
03 00 38 00 00 00 00 00 ..B.... *
00 01 0D CE 91 55 45 B4 UE ~
4 i LN [| [N m | »
Details |RE"\’E‘FSi”9| A
|
e |[£] o m w3 OR | W | Columns ’[default) v|[Setup ...] | Review Buffer... =
i» *+ (edit) *+ (edit) *+ (edit) * [edit) * [edit) * [edit) Mo Bus Errors

Figure 8: Initial Messages View Display. After going online, you should see a Messages View screen similar to this one. [A:
Column display selection drop-down box and columns/messages setup button.]

Note: If Vehicle Spy 3 responds with an error such as Could not

find hardware, this means that the EEVB is not properly
connected to the computer. Please connect the board, return to the
Logon Screen and press |Refresh Ethernet Interfaces|. If this does not
resolve the issue, there may be a configuration problem; please
consult the EEVB User’s Guide for troubleshooting or support
information.

Part 1.1D Switching to Ethernet Column Display and Examining Message View
Columns

By default, Vehicle Spy 3 begins with the Messages View in its generic display format, which
is designed to support many types of vehicle networks. Since we are specifically interested in

Version 1.0 - August 3, 2015 10 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Ethernet we will change the display to one that provides more information relevant to Ethernet
messages.

» Change the Messages View Columns Display to Ethernet: Near the bottom of
the Messages View (Figure 8:A) you should see Columns, and to the right of it, a

drop-down box in which (default) is currently selected. Click the box, scroll down, and
change the setting to Ethernet (Figure 9).

The information in the Messages View will immediately change to more Ethernet-specific data.

Columns l{default} v][Setup ...]

FlexRay - |
—_— ARINC 825
P 10ST
CAN FD
PTP (802.1as) E
TCF &
FSA -

+ (edit)

Figure 9: Selecting Ethernet Column Display. This setting will cause Messages View to display information pertinent to work
with Automotive Ethernet.

Part 1.1E Adjusting the Vehicle Spy 3 Window Size and Column Widths

Depending on the size of your display, you may or may not see all of the columns available;
you may also find that some are too narrow to see all of their contents. This is the case with
Figure 10, which shows how Figure 8 looks immediately after changing the column display.

Version 1.0 - August 3, 2015 11 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help

{0 ~ online (CoreMini active)... |[x3) Pltform (None) DSV ELETT) — % pata -
ava Messages Editor [E2 | @ Messages | [=]

[%rAker | [==pdd | [& scoll | [T Details i [¥] Expand E] [&T Time Abs|[M Pause | save | [X Erase] Find: [z[
.
% x Count Time Tx |Er %l Description Source SrcPort |Destination
Filter
=) o%n Messages +
=" 10.019986 5 Ethernet 192.168.1.116 to 1... 192.168.1.116 60269 173.194.123.68
Custom 1
el B 10.029975 & Ethernet 192.168.1.116 to 1... 192.168.1.116 60243 173.194.68.95
Custom 2 oiu 1 Ethernet 192.168.1.116 to 1... 192.168.1.116 80137 173.194.75.189 N
Custom 3 oo 1 Ethernet 192,168.1.1165 to 1... 192,168.1.116 54291 192.168.1.1
Custom 4 o 1 Ethernet 192.168.1.116 to 1... 192.168.1.116 51726 192.168.1.255
.
Custom 5 'l 10 ps Ethernet 192.168.1.116 to 1... 192.168.1.116 55356 192.168.2.245
oo
Custom & 2 1 Ethernet 192.168.1.116 to 1... 192.168.1.116 65123 192.168.3.80
2 B 55.604 ms Ethernet 192.168.1.116 to 1... 192.168.1.116 59870 199.16.156.52 .
= kd Data Types
2 3 40012315 Ethernet 192.168.1.116 to 2... 192.168.1.116 65123 213.199.179.142
MNetwork =
2 8 990 ps Ethernet 192.168.1.116 to 2... 192.168.1.116 59871 216.58.219.197 = .
@ Transmit eia 10.019990 Ethernet 192.168.1.116 to 2... 192, 158.1.116 60268 23.48.124.10
@) Errors . e 4 2.999546 5 Ethernet 192.168.1.116 to 2... 192.168.1.116 57108 239,255.255.250
Changing -4 [b *
No Match - - -
Details for "Ethernet 192.168.1.116 to 173.194.123.68
Com |EtEd Ms N | *
P s Message on Ethernet frof| Name Value 00 90 B9 CD D2 26 EC F& &..
=) =%, Networks | Ethernet, Src: EC:F4:BB: BE 6F 01 3C 02 00 45 00 .n.<..E.
neaVI Internet Protocol Version 00 29 20 3B 40 00 80 06 .) ;@... .
Transmission Control Pra
Ethernet 00 00 CO A8 01 74 AD C2 t..
78 44 EB €D 00 50 84 F& {D.m.F.. .
SBE 1D E0 5C BO 02 50 10 [..\..P.
3F CE EE 3E 00 00 00 S-S
.
4 | LAIEN i L3
Details |R9'\’9r5i”9|
P | o e ou 37O | W Cqumns’Ethernet v| setup.. | Review Buffer... =
* (=dit) * (=dit) * (=dit) * (=dit) * (=dit) | No Bus Errors

Figure 10: Messages View After Selecting Ethernet Columns. After changing the columns setting we can see several new
columns specific to Ethernet messages, including Source, Src Port and Destination. However, this window is not wide enough
to show all of the columns we want to see.

If your PC’s display is large enough, one obvious option here is to widen the window. Like
many complex programs, Vehicle Spy 3 does work best with more graphical “real estate”.

» Enlarge the Vehicle Spy 3 Window: Drag the right edge of the VSpy program window
to the right until it is just large enough to include the columns up to Len (short for
“Length”).

Figure 11 shows what Figure 10 looks like after this has been done.

Version 1.0 - August 3, 2015 12 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

New Spy Setup - Vehicle Spy =ARC X
File Setup SpyMetworks Measurement Embedded Tools Scripting and Automation Run Tools Help

& - online (coremini active)... _[52] [[P pltiorm ione) % [\ [@ peskeop? A Data |-

a8 Messages Editor [23 | (@ Messages @” P
e)| o e Bomm (5] el gc

=i x ‘Cuunt |ﬂme ‘Tx ‘Er ‘%L Description Source |Src Port |Desﬁnaﬁun |Dst Port |EﬂwerType|Prutucul |VLAN ‘Len
T — [] | [I I
e 17 10.023983 s Ethernet 192.168.1.116 to 1... 192.168.1.116 60313 173.194.123.68 80 P4 TCp 55
Custom 1
oo 8 21,572 ms Ethernet 192,168, 1,116 to 1.., 192,168, 1,116 60269 173.194.123.68 80 Pva TCP 54
Custom 2 e 11 27.138958 s Ethernet 192,168, 1,116 to 1., 192.168.1.116 59877 173.194.206.139 443 Pv4 TCP 54
Custom 3 “'-‘,’“ 5 29.150979 s Ethernet 192.168.1.116 to 1..,192,168.1.116 60233 173,194,206, 189 443 IPv4 TCP 54
Custom 4 oo 8 215ps Ethernet 192,168.1.116 to 1... 192.168.1.116 60021 173.194.207.189 243 Pva TCP 100
Custom 5 e 25 96.873 ms Ethernet 192.168.1.116 to 1.., 192.168.1.116 59427 173.194.207.189 443 Pu4 TCP 54
Custom & oo 12 281ps Ethernet 192,168, 1,116 to 1.., 192,168, 1,116 59873 173.194.68.139 243 Pva TCP 100
e 5 33.712ms Ethernet 192,168, 1,116 to 1., 192.168.1.116 60243 173.194.68.95 80 Pv4 TCP 54
i= &3 Data Types
. “'-‘,’“ 15 99.933ms Ethernet 192.168.1.116 to 1..,192,168.1.116 60137 173.194.76.189 443 IPv4 TCP 54
Networl
oo 3 20.142488 5 Ethernet 192,168.1.116 to 1... 192.168.1.116 57584 173.68.149.31 24598 IPv4 upp 64
Q) Transmit L'l 12 20.141575 Ethernet 192,168, 1,116 to 1... 192.168,1,116 57684 173.68.149.31 54465 TPu4 TP 58
@) Erors el T 4 20.009077 5 Ethernet 192,168, 1,116 to 1.., 192,168, 1,116 57584 178.43.220,114 15208 [Pv4 upp 64
Changing « [»
No Match _
Details for "Ethernet 192.168.1.116 to 173.194.123.68'
Completed Msg Message on Ethernet from Ethernet PCAP (icsenet.dll) @ 55 bytes capti| Name Value 00 80 A9 CD D2 26 EC F4 g..
= e Networks i Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: WesternD_CD:D2:26 (00:90 BE BE 01 3C O 00 45 00 .n.<..E
neoVT Internet Protocel Version 4, Src: 192.168.1.116, Dest: 173.194.123.68 00 29 25 43 40 00 80 06 .)%JG...

Transmission Control Protocol, Src port: 60313, Dst port: 80
Ethernet 00 00 CO A2 01 74 AD CZ EL..

7B 44 EBE 22 00 50 BC FB {D...P..
3B 76 DE 3E 52 DE 50 10 :v.>R.P.

3F D& EB 3E 00 00 00 2.5
4 m + Ll nm 13
Details |R9V9"S'"9|
E |E] ECIL U U] ‘ 2. Columns [Ethernet v|[Setup ... Review Buffer... =
i + (=dit) + (=dit) + (edit) * (edit) * (edit) v (edit) + (=dit) No Bus Errors

Figure 11: Widened Messages View. After widening the Vehicle Spy 3 window, we can now also see the Dst Port, EtherType,
Protocol, VLAN and Len columns.

Because of the wealth of information provided in the Messages View, it is indeed
advantageous to have a large screen when running Vehicle Spy 3. However, this isn’t always
possible; for example, you may need to use VSpy on a small laptop. In the case of this Lab
Manual, we have deliberately kept the window size to 1024x768 both because it is a “least
common denominator” and also in order to keep screenshots legible.

Another option in these cases is to resize the columns. This can be done in the same way as
we did with the Ethernet interfaces list divider on the Logon Screen. As an example, let’s tinker
with the width of one column.

» Make the Count Column Narrower: Hover over the divider in the header row to the
right of Count and drag to the left until the divider overlaps the letter “t”.

The name will change to Co..., with the periods indicating that the column is now too narrow to
display its full name.

» Make the Count Column Wider: Now drag the divider back to the right again, and
Count will reappear.

Of course, you can also do a little of both, making the VSpy window larger and also adjusting
the column widths until you find what is most practical and appealing to you. Notice that the
default widths of many columns are greater than they need to be for the data they contain, so
they can be easily narrowed.

Version 1.0 - August 3, 2015 13 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

In Figure 12 we have shrunk the Vehicle Spy 3 window back to the original size we used in
Figure 10, but reduced the widths of most of the columns so that we can still view most of the
same data we had in the more expansive Figure 11. In this manner we can fit all of the most
important Ethernet fields in the view.

New Spy Setup - Vehicle Spy ‘ ‘ E@g

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Bun Tools Help

‘@~ online (CoreMini active) ' Platform:| (None) i |4, | | [Desktop @ Data |~

ova Messages Editor [£2 | @ Messages [E5) i3

[™sFiter | [ownadd | [& seroll | [petails | [Expand (9] [T Time Abs|[M Pause || Bl save | [X Erase |[&) Find:E =l
% x Count | Time: Tx |Er %l Description Source Src Port | Destination Dst Port |EtherType | Protocol | VLAN |Len
B oo MESSEQES i
2 & 44.001ms Ethernet 173.194.2... 173.194.207. 189 443 192.168.1.116 60021 IPv4 TP 60 *
Custom 1 2 & 74.045 ms Ethernet 173.194.6... 173.194.68.189 443 192.168.1.116 53873 IPv4 TP 60
Custom 2 2 8 26.349727s Ethernet 173.194.7... 173.194.76.189 443 192.168.1.116 60137 IPv4 TP 114 N
Custom 3 2 1 Ethernet 174.232.6...174.232.65.3 17262 192.168.1.116 65123 IPv4 uoP 151
Custom 4 =e 1 Ethernet 179.71.25...179.71.250.243 17953 192.168.1.116 57684 IPv4 uoP 60
Custom § e 1 Ethernet 184.25.10...184.25.108.56 443 192.168.1.116 60066 IPv4 TP 91 ‘
Custom & = 8 10.019429s Ethernet 184.25.10... 184.25.109.241 80 192.168.1.116 60356 IPv4 TP 66
5 & Data Types " 13 10.014430s Ethernet 184.25.10..,184.25.109.88 80 192,168.1,116 60339 IPv4 TP 56 .
®° 10 10.021861s Ethernet 134.25.10..,184.25.109.88 80 192,168.1,116 60350 IPv4 TP 56
Network ®° 10 10.020672s Ethernet 184.25.10...184.25.109.88 80 192.168.1.116 60351 [Pv4 TP 66 .
@ Transmit @¥e 13 10.024883s Ethernet 184.25.10...184.25.109.88 80 192.168.1.116 60340 IPv4 TP 86
@ Errars . oiu 7 10.013987s Ethernet 184.25.10...184.25.109.88 80 192,168.1.116 60354 IPv4 TCP 66
Changing LI 3 *
horeic
Completed Meg Message on Ethernet fror| name Value EC F4 BE 6E 01 3C 00 20 ...n.<.. ’
=) =5 Networks = Ethernet, Src: WesternD | 29 CD D2 26 02 00 45 20 ...&5..E
neovl Internet Protocol Version 00 28 94 1B 00 00 2C 06 . (.u..,. .
Transmission Control Pra
Ethernet BL F8 AD C2 CF BD CO A%
01 74 01 BB EA 75 99 D3 .t...u.. .
C9 €7 EC 71 27 A9 50 10 ...q'.P.
02 OB OA 46 00 OO0 OO 00 ...F....
00 00 00 00 *
« [KN mn | 5
Details |RE"\’E‘FSi”9|
|
P | o0 oo 3R | LE Columns’Ethernet v|[Setup ...] Review Buffer... .
i *» [adit) *» [adit) *» [adit) » (edit) » (adit) » (adit) Mo Bus Errors

Figure 12: Messages View with Resized Columns. Here we have restored the Vehicle Spy 3 window to its original size, but
changed the column widths to still show all of the key Ethernet data.

Part 1.1F Saving the Custom Column Setup

We have now tailored the Messages View to suit our preferences. However, if we close the
program and then restart it from scratch, it will reset all of the columns to their defaults. To
preserve our changes, we need to save them in a new setup file. But first we need to go offline,
as setups can’t be loaded or saved while online.

» Go Offline: Press the [button to go offline.

» Create a New Setup File: Select 2ave As from the File menu. When the dialog box
appears, enter 1.1 Custom Column Setup.

Version 1.0 - August 3, 2015 14 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

That’s it. But now, let’s test that this does in fact work.

» Close Vehicle Spy 3: Close Vehicle Spy 3 by selecting Exit from the File menu. You
can also press the Alt+F4 key combination.

» Start Vehicle Spy 3: Select k= Vehicle 5py 3 from the Windows Start Menu, or click the
icon on your desktop, as before.

» Select the Most Active Regular Ethernet Interface: Select the same interface that
you used earlier.

» Go Online: Press [M.

You will be back where you were at the start of Part 1.1D, with the generic Messages View
display. Now let’s load our setup and see what changes.

For convenience, Vehicle Spy 3 remembers the last several setup files you have used and lists
them under the Recent tab on the Logon Screen. You should see 1.1 Custom Column Setup
here since you just created it.

» Go Offline: Press [d.
» Return to the Logon Screen: Select Logon from the File menu.

» Load the Custom Column Setup: Double-click 1.1 Custom Column Setup,
which should be on the | recent | tab. If for whatever reason you don’t see it there, look
under the | My setups| tab.

Vehicle Spy 3 will automatically switch you to the Messages View. You should see that your
adjusted columns have been restored.

» Go Online: Press [M.
Messages should begin appearing in a display similar to that of Figure 12.

» Go Offline: Press [d.

Part 1.1G Changing the Column Setup

Squishing the column widths allowed us to squeeze all of the columns into a relatively small
program window. That said, you can see that the display is pretty crowded. In particular, we've
really cut the size of the Description field down to the point where it's heavily truncated, and not
that useful for longer message summaries.

There’s another option available to us for adjusting the Messages View to meet our needs:
customizing the column setup. The columns you see when you first run Vehicle Spy 3 and
select the Ethernet column set are simply defaults. There may be some columns in there that
you don’t care about, and so you can tell VSpy not to show them, providing more space for the
data you do want to see.

Version 1.0 - August 3, 2015 15 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

We can make the changes we are after using a special setup dialog box accessible from the
Messages View. The same setup area is used both to change the columns in the message
display (what we are doing now) and to adjust the size of the message history buffer (which we

will do in Lab 1.2).

» Enter Scrolling Message History Setup: Press the button, which can
be found at the bottom of the display near where you changed the column view

(Figure 8:A).

Since we told VSpy to show the Ethernet column setup in Messages View, the dialog box
shows the column setup for Ethernet. On the left is a list of all available columns, and on the
right, the ones presently being shown for Ethernet messages.

Let’'s say we know we will never be using virtual LANs (VLANSs) on our network, so we want
to remove that column from the display to save space. We also don’t need to know how long
messages are, don’t care about elapsed time between messages, and don’t need the Network

column either—it will always be Ethernet.

» Delete VLAN Column: Click WLA&M to highlight the VLAN column, and then press [=]
(found below the list) to remove it from the column setup (Figure 13). The Messages

View will be updated immediately.

» Delete Time, Len and Network Columns: Repeat the process above for the Time,

Len and Netwaork entries.

» Save Changes: Click to close the dialog box.

anes ||

2 [&scroll | [T petails] [¥/Expand @ (&7 Time Abs|[M Pause | Save | [:
L i L T — L i i i
~ Nt Port | E
Scrolling Message History Setup @
General r
MNumber Of Messages in History (min 100) Recent Time (ms) P
50000 5000 P
Bo P
Column Setup 27 P
[Ethernet '] * = | r:j iz
Fields Available Fields Selected ®
~| [Line/Count
Any Error Time 1
Arbld/Header c Transmitted EBs 1
ARINC Dest FID 1 Any Error
ARINC DOC Description P
ARINC LCC Ethernet Source Address P
ARINC LCL Ethernet Source Port
ARINC PVT Ethernet Destination Address 7 P
9 ARINC RCI Ethernet Destination Port
ARINC RSD Ethernet EtherType :
ARINC SID Ethernet Protocol -
ARINC Source FID VLAN |_
Bit Rate Switch Len
CAN Format (std/xtd) Data Bytes 00 24
CGI Checksum Network
Change Count MNode 46 0(
Class 2 C Bit Change Count 01 0:
Class 2 Msg Type RTC Time
Class 2 Q Bit Memo/Notes E0 oc
ClientHnd| < 16 of
[Add==] [cear] [=][2][& 00 of
el
e B ||
m ,W“

Figure 13: Deleting a Column from the Messages View Display.

Version 1.0 - August 3, 2015

16

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

We now have more room for the remaining columns, and can increase the size of the
Description field. The result can be seen in Figure 14.

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ E@g

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Bun Tools Help

LG ~ oOnline (CoreMini act'we)...j Platform:| (None) i |4, | | [Desktop @ Data |~

ova Messages Editor [£2 | @ Messages [E5) i3

e " e I i i] 1o Al
N Eilter] [o Add] [& Seroll] ["l Details] [¥] Expand @ [A‘l Time Abs][My Pause] Save] [> Erase] Find:|Des
% x Count | Tx |Er %l Description Source Src Port | Destination Dst Port | EtherType | Protocol
—— Filter
|=) o0 Messages
2 1] Ethernet 184.25.109.98 to 192.168.1.116 184.25.109.98 &0 192.168.1.116 65455 IPv4 TCP
Custom 1
2 1] Ethernet 184.25.109.98 to 192.168.1.116 184.25.109.98 &0 192.168.1.116 65453 IPv4 TCP
Custom 2 2 Ethernet 192.168.1.1 to 255.255.255.255 192.168.1.1 46400 255.255.255.255 7436 IPv4 uoP
Custom 3 2 1] Ethernet 192.168.1.116 to 184.25.109.98 192.168.1.116 §5453 184.25.109.98 &0 P4 TCP
Custom 4 =e B Ethernet 192.168.1.116 to 74.125.226.182 192.168.1.116 65478 74.125.226.182 443 P4 TCP
Custom § e 1] Ethernet 192.168.1.116 to 80.69.129.117 192.168.1.116 61953 80.69.129.117 12345 IPv4 TCP
Custom & = Ethernet 74.125.226.182 to 192.168.1.116 74.125.226.182 443 192.168.1.116 65478 IPv4 TCP

=) &4 Data Types
MNetwork
@) Transmit
(@) Errors
Changing

Mo Match

C leted M:
empetsaea Message on Ethernet from E| Name Value 33 33 00 00 00 OC 48 5B 33....H

-
B:B:,Networks = Ethernet, Src: 48:5B:39:5A: 39 5 98 85 86 DD 60 00 9Z....° __
Internet Protocol Version 6, 5

00 00 00 SA 11 01 FE 80
User Datagram Protocol, Src .
Ethernet 00 00 00 00 00 00 24 3R H

EC 62 DD 4B 8A 49 FF 02 .b.EK.I.
00 00 00 OO0 OO0 00 00 00
00 00 00 00 OO0 OC DA 42I
07 6C 00 SA 44 ER 4D

53 45 41 52 43 48 20 2R S5EARCH 7
4 3 N [| |1 1 | »

neovl

Details |RE"\’E‘FSi”9|

:E“‘- | woome o w J7 R | P Columns’Ethernet v|[Setup ...] Review Buffer...

Fe | * (adit) * (adit) * (adit) * (adit) * (=dit) * (adit) No Bus Errors

Figure 14: Messages View with Customized Columns. Now we have removed some of the columns, allowing us to make
more room for the remaining columns we want without needing to enlarge the Vehicle Spy 3 window.

That looks much better. There’s only one problem: we actually do want those columns that
we just removed! Unfortunately, this tug of war between window size, number of columns and
column width is just one of those trade-offs that exists in the world of computing. In this case
we want to keep the columns, but also leave the screen relatively narrow so screenshots are
readable, so we’ll have to live with a skinny Description column.

The easiest way to get back the columns we deleted is simply to restore the setup we saved
just before we changed the column setup. (A good illustration of why saving frequently is a
good idea!)

» Return to the Logon Screen: Select Logon from the File menu.

» Load the Custom Column Setup: Double-click 1.1 Custom Column Setup,
which should be on the | Recent | tab.

Version 1.0 - August 3, 2015 17 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Naturally, on your own computer you should feel free to adjust the window size, column
selections and column widths to suit your own needs, then save the setup if you wish.

Part 1.1H Understanding Ethernet-Specific Columns in the Messages View

There are quite a few columns in the Messages View. This can seem a bit daunting at first,
but remember that these fields represent a substantial amount of information that you will
eventually appreciate as you work with Ethernet frames. To keep things simple for now, let’s
start by looking at just a few of the more interesting columns, especially when working with
Ethernet:

Count: Vehicle Spy 3 aggregates messages of the same type so you can more easily
analyze the nature of traffic on the network. This column shows the number of each
message type that has been received since going online.

Time: The approximate elapsed time between receipt of the most recent message of
this type and the one before it.

Description: A summary of the message type. For Ethernet messages these of course
begin with Ethernet and then generally contain the source and destination addresses.
These will be either MAC addresses for plain Ethernet or AVB frames, or IP addresses
for TCP/IP datagrams.

Source and Destination: The sender and receiver of the message, which again will be
either MAC addresses or IP addresses.

Src Port and Dst Port: The source and destination port numbers for UDP and TCP
messages.

EtherType: The interpreted value of the two-byte EtherType field in the Ethernet header,
indicating the type of data being carried in the frame. Typical values are IPv4, IPv6 or
ARP.

Protocol: The interpreted value of the IPv4 Protocol field or IPv6 Next Header field,
specifying the higher-level protocol message being carried in an IPv4/IPv6 message.
This will normally be UDP or TCP.

-

Note: Concepts such as IP addresses and UDP/TCP ports are

explained in later sections where we use these protocols. You
can also find more information on them in your Automotive Ethernet
book.

Version 1.0 - August 3, 2015 18 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.2 Making Use of Advanced Vehicle Spy 3 Analysis Functionality

We now know how to go online and view Ethernet traffic, but have only really scratched the
surface of Vehicle Spy 3’s powerful Messages View. In this lab we will further explore this
essential element of the VSpy software, looking at some of the functions and tools that will let
you dig into and understand Ethernet messages.

You should still have 1.7 Custom Column Setup loaded from having done Lab 1.1. If not, follow
the directions in Lab 1.1 to load that setup.

Please start by taking a brief look at Figure 15. This image is a capture of the VSpy Messages
View similar to the ones we saw in the previous lab, but various elements of the user interface
have been highlighted and labeled. We will refer back to this figure throughout the pages that
follow.

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ E@g
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Bun Tocols Help
E ~| Online (CoreMini active)... I- - H Platform: (Nane) || 9| | (B Desktopl 3 Data |~
oo Messages Editor [£2 | C Messages [E3) A H B F i
ter | [=eadd | I £ Scroll " "l Details [¥] Expand E] A‘I’TimeAbsl M Pausei B save || X Erase l Find:|Des
G { x{ Count | Tim: Er 9], Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAN | Len
= o - . Filter I
o%n0 Messages
=e 1 E Ethernet 173.194.123... 173.194.123.40 443 192.168.1.116 50535 IPv4 TCP]
Custom 1
Hstom e 1ps Ethernet 173.194.204... 173.194.204. 189 443 192.168.1.116 50426 IPv4 TCP 100
Custom 2 = Ethernet 180.191.69.5.. 180.191.69.5 65245 192.168.1.116 57684 IPv4 TCP 60
Custom 3 i 10,719 ms Ethernet 180,191.69.5., 180,191,69.5 48076 192,168,111 57684 IPv4 UDP 156
Custom 4 “'-}'“ ﬂ 226 s Ethernet 132,168.1,11,, 192,168,1,116 50426 173,194.204.139 443 IPv4 TCP 100
Custom 5 C“’:\;““ E 472,928 ms Ethernet 192.168.1.11.. 192,168.1.116 57684 180.191.69.5 65245 IPv4 TCP 54
Custom & “';“ E 73.654 ms Ethernet 192.168.1.11., 192,168.1.116 50075 £4.233.171.189 443 IPv4 TCP 2371
G 6§ Data T “5‘;'“ Eﬂ 10,727 ms Ethernet 192.168.1.11.. 192,168.1.116 57684 74.115.0.219 14107 IPvw4 LDp 15 *
ata Types
"5‘;'“ l 564,957 ms Ethernet 192.168.1.11.. 192,168.1.116 57684 74.115.0.219 59625 IPv4 TCP 30
Network.
'l 5] 738 s Ethernet 64.233.171.... 64.233.171.189 443 192.168.1.116 50075 IPv4 TCP 80
) Transmit ke B 987.997ms Ethernet 74.115.0,219.. 74.115.0.219 59625 192.168.1.116 57684 IPv4 TCP 66
(@) Errors
4 =
Changing .« [I 9
Mo Match g m
o ra Details for "Ethernet 64.233.171.189 to 192.168.1.116"
.
Completed Msg Message on Ethernet from Ethernet PCAP (ic| Name Value EC F4 BE 6E 01 3C 00 90 n.<.
=) =2 Netwarks = Ethernet, Src: WesternD_CD:D2:26 (00:90:4 45 CD D2 26 02 00 45 20 ...&..E
- Internet. Prptocol Version 4, Src: 64.233.171) 00 28 E3 21 00 00 2E 06 . (.1....
Transmission Control Protocol, Src port: 443
Ethernet FA CE 40 E9 AE BD CO A8 ..@.....
I 1 I 2 01 74 01 BB CSEBSD 75 .t...-1u
- - 80 BC 6D 2B D& ®0%40 10 ..m...PB.
05 51 14 2C 00 00 00 00 .Q.,.-..
00 00 00 00
w1 P 4 M b
Details |RE"\’E‘FSi”9| D
= | o mow 3R | WE Columns’Ethernet YJ[Setup ...]| Review Buffer... !
i» *+ (edit) *+ (edit) *+ (edit) * [edit) * [edit) * [edit) Mo Bus Errors
=]

Figure 15: Annotated Messages View. Another screenshot of the Vehicle Spy 3 Messages View, with various features
highlighted for easy reference as you read this lab. [A: Scroll button. B: Pause button. C: Circular message buffer display. D:
Column and buffer setup button. E: Filter row. F: Erase button. G: Master filter on/off button. H: Details View button. I: Details
View window; I-1: Information pane; I-2: Signal Name/Value pairs; |-3: Message byte/character display.]

Version 1.0 - August 3, 2015 19 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 1.2A Exploring Scroll Mode

As we mentioned in Lab 1.1, Vehicle Spy 3 defaults to aggregating similar messages for
easier tracking and analysis. This is called the static mode of the Messages View. However,
sometimes we want to see messages sequentially rather than having them grouped in this
manner. Naturally, we can easily change between the two modes.

» Go Online: Press [M.

» Enable Scroll Mode: Press the | & saall | button, located near the top left of the
Messages View (Figure 15:A).

You will immediately see the change in the message display, as it (appropriately enough)
begins scrolling, each new message appearing in a separate line rather than being grouped.
Notice also that the Count column has now been replaced by a Line column, the number of
which increases sequentially. The [_& serll_| button has also changed to [L&sewll], indicating
that scroll mode is currently on.

If you have a decent amount of traffic on your network connection, you may find that the
Messages View scrolls rather quickly—perhaps even too quickly to get much of a chance to
look at individual messages. One way of dealing with this is simply to pause the screen.

» Pause Message Scrolling: Go to the top middle of the Messages View and press the
[ause | button (Figure 15:B).

Obediently, Vehicle Spy 3 pauses the message display, though of course the program will
continue capturing messages as they come in. Notice that the button has also turned
blue to indicate that message display has been temporarily halted. Let's resume message
display now.

» Resume Message Scrolling: Press the button again.

You'll notice that the line number “jumps” as Vehicle Spy 3 resumes showing you the most
recent messages, and the blue highlighting on the button disappears. The messages with
numbers that were not displayed are held in the buffer so you can pause again and scroll back
to find them if desired.

Now let’s go back to static mode.
» Enable Static Mode: Press again to turn off scroll mode.

Vehicle Spy 3 resumes showing you messages statically aggregated by type with counts.

Part 1.2B Changing Buffer Size and Clearing the Buffer

Vehicle Spy 3 stores messages in a circular buffer, which is represented by a slowly rising gray
vertical bar to the left of the Count column (Figure 15:C). When the bar gets all the way to the
top, the buffer is full, and VSpy will then start overwriting the oldest data with newer data.

Version 1.0 - August 3, 2015 20 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

By default Vehicle Spy 3 will store 50,000 messages, but this can be changed. Let’s give it a
go.

» Go Offline: We can’t change the buffer size while data is coming in, so press the [
(Stop) button to go offline.

» Enter Message Setup: Press the button (Figure 15:D). You may recall that
we used this button to customize the column setup in Lab 1.1.

A dialog box appears with the first edit box containing the default value of 50000.

» Change Buffer Size: Enter 100000 in the box below the
Number Of Messages in History (min 100) label. Then press the [_ces |
button to close the dialog box.

» Go Online: Let’s go back online again now, using the & button.

VSpy will now collect 100,000 messages before overwriting old data.

Part 1.2C Sorting Columns

Vehicle Spy 3 allows you to sort the messages in the Messages View so you can see the

data in whatever form works best for you. To do this, simply click on a column header until it
contains the 24 symbol (for ascending order) or &4 (for descending order). You may notice that
VSpy actually starts up with Messages View sorted by Description in ascending order.

Note: If you've made the Count column very narrow, you may
want to widen it somewhat for this part of the lab, so you can
see the changes to the header.

» Go Offline: Press [to go offline.

» Sort by Count in Ascending Order: With scroll mode off, press the Count column
header once.

The messages are automatically sorted with the lowest count at the top and the highest at the
bottom (Figure 16).

» Sort by Count in Descending Order: Press the 2} Count column header.
The order is now reversed.

» Disable Sorting: Press &4 Count |
Sorting is disabled and the standard view restored.

If you wish, try clicking some of the other columns to experiment with the sorting feature.

Version 1.0 - August 3, 2015 21 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Count &l count %] count
3 1 4
4 1 3
3 2 3
2 2 3
2 2 2
2 3 2
i 3 2
1 3 1
3 4 i

Figure 16: Sorting in the Messages View. Left, message type counts as they appear by default in the Messages View of
VSpy; middle, the same messages sorted in ascending order by count; right, sorted in descending order.

Part 1.2D Filtering

Another way of managing the large amounts of data generated by Ethernet networks is to use
filters so you see only what interests you at a particular time. At the top of the Messages View,
just below the column headers, is a row that says Filter on the far left, and has an empty box
for each column (Figure 15:E). To create a filter, simply enter something in the appropriate box.

» Filter by Protocol: In static mode, enter UDP in the box below the Protocol header.

Vehicle Spy 3 will update the Messages View so only UDP messages are shown, while others
are suppressed (Figure 17).

‘ Count |T|me |Tx |Er | %l Description |Saurce |5rc Port |Desnnaﬁon |Dst Port |Et:herT\,'De |Promcol |VLAN |Len
Fiter { 1

“'},'“ 2 |IU‘UZQDUD s| | |Eﬂ1ernet 192, 16...|192. 168.1.115 |5El?'40 |64‘ 233.171.95 |SD |IPV4 TCP 55
“3\,"“ 1 Ethermet 192.16...192.168.1.116 65123 65.55.223.41 40016 IPv4 LDP 193
“5;“ 8 730.000 ms Ethernet 192.16...192.165.1.116 ~ 65123 68.98.143.123 65428 IPv4 TCP 86
“5;“ 1 Ethernet 192.16...192.165.1.116 ~ 65123 68.98.143.123 25616 IPv4 UDP 64
“'-\r""" 3 6.008000 s Ethernet 192.16...192. 168, 1.116 58762 £9.167.144.15 443 IPv4 TCP 62
“‘-}"’ 1 Ethernet 192.16...192.168.1,116 65123 71,163.153.73 12679 IPv4 uppP 64
“‘-}"’ 8 420.000 ms Ethernet 192.16...192.168.1,116 65123 71,163.153.73 50816 IPv4 TCP 58
“3\,"“ 1 Ethermet 192.16...192.168.1.116 58751 74.125.22.188 443 IPv4 TCP 54
“5;“ 2 10.005000s Ethernet 192.16...192.168.1.116 58751 74.125.226.185 80 IPv4 TCP 55
“5;“ 2 9.223000 s Ethernet 192.16...192.168.1.116 58630 74.125.226.86 443 IPv4 TCP 54
“'-\r""" 2 10.026000s Ethernet 192.16...192. 168, 1.116 58756 74.125.228.5 80 IPv4 TCP 55
“‘-}"’ 6 2.1000000 s Ethermet 192.16...192.168.1.145 652348 239.255.255.250 1500 IPv4 uDP 139

‘ Count |T|me |Tx |Er | %l Description |Saurce |5rc Port |Desnnaﬁon |Dst Port |Et:herT\,'De |Promcol |VLAN |Len

e] | 1 o

“'},'“ 2 Qps Ethernet 192.16...192.168.1.116 65123 157.55.56.168 40017 IPv4 UDP 195
“3\,"“ 1 Ethermet 192.16...192.168.1.116 52034 192.168.1.1 53 IPv4 LDP a3
“5;“ 1 Ethernet 192.16...192.168.1.116 62858 192.168.1.1 53 IPv4 UDP 78
“5,""" 3 760.000 ms Ethernet 192.16...192.168.1.116 137 192.168.1.255 137 IPv4 UDP 92
“'-\r""" 4 Ops Ethernet 192.16...192. 168, 1.116 52608 192,168.2.245 161 IPv4 UDP 120
“‘-}"’ 1 Ethernet 192.16...192.168.1,116 65123 213.199.179.157 40018 IPv4 uppP 80
“'},'“ 1 Ethernet 192.16...192.168.1.116 ~ 65123 50.77.232.178 22687 IPv4 UDP 73
“3\,"“ 1 Ethermet 192.16...192.168.1.116 65123 50.77.232.178 9825 IPv4 LDP 73
“5;“ 1 Ethernet 192.16...192.168.1.116 65123 65.55.223.41 40016 IPv4 UDP 193
“5;“ 1 Ethernet 192.16...192.165.1.116 ~ 65123 68.98.143.123 25616 IPv4 UDP 64
“'-\r""" 1 Ethernet 192.16...192.168.1.116 =~ 65123 71,163.153.73 12679 IPv4 UDP 64
“‘-}"’ 6 2.1000000 s Ethermet 192.16...192.168.1.145 652348 239.255.255.250 1500 IPv4 uDP 139

Figure 17: Messages View Filtering. The message list area of the Vehicle Spy 3 Messages View, seen before (above) and
after (below) adding a Protocol field filter to select only UDP messages.

Version 1.0 - August 3, 2015 22 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Clear the Filter: Return to the same box, delete the letters UDP and press Enter.
The Messages View is now restored to its default state.
Next, let’s try a more complex filter.

» Filter by Protocol and Count: Enter TCP in the Protocol column filter box, and 1 in the
Count filter box.

You will now see only TCP messages that were received exactly once since Vehicle Spy 3
went online. While online, Vehicle Spy 3 will even add and remove entries from the display
dynamically as their counts change.

You can also use a comma to separate two different filter criteria.
» Filter on Two IP Counts: Change the Count filter to 1,2.

Now all messages that have been received either one or two times will be displayed.

Part 1.2E Filtering in Scroll Mode

When scroll mode is on, adding a column filter will only suppress the display of newly-arriving
messages that don’t match the filter; existing messages will be preserved. Let’s see how this
works.

» Clear Filters: Delete all filters from the filter row.

» Enter Scroll Mode: Press [& saoll |,
» Go Online: Press [M.
» Enter a Protocol Filter: Enter ARP in the EtherType column filter box.

You will probably now see the scrolling messages appear to stop, as if nothing is happening.
This is because ARP messages are usually received infrequently on real Ethernet networks.
Vehicle Spy 3 is still running, and is still showing you the messages that were received before
you entered the filter. However, it is suppressing the display of all non-ARP frames, and these
usually arrive only infrequently.

If you wait for a minute or so, you should see some ARP messages start to show up. However,
the old messages will also still hang around. It would be easier to see what we’re doing without
this clutter of old messages, which don’t match what we’re looking for anyway. Let’'s remove
them from the display.

» Erase All Messages from Messages View: Press the button, near the top
center of the Messages View display (Figure 15:F).

All current messages in the display are removed. Now only new ARP messages that arrive will
be shown (Figure 18).

Version 1.0 - August 3, 2015 23 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ l“:'“@‘g
Eile Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
: [~|Online (CoreMini active).. Platform:| (Mone) i) (4| | B Desktop1 (% Data |~
@2 hessages Editor [22 | (E Messages \E” o
[%rier | [==aAdd | [> serall J [] petails J [¥ Expand @ [A‘l Time Abs][M Pausel [X Erase I Find: |Des
‘% x |L\ne |'ﬁmE |Tx |Er |DEscriph'un |SuurcE ‘Src Purt‘Desﬁnatiun |D5t Port|Eﬁ1&rType|Prutuml ‘\IL#N Len
— A |] |] I
“'-\;" 1 Ethernet EC:F4:BB:6E.., EC:F4:BB:6E:01... Broadcast ARP 42
Custom 1
ustom “'-\;" 2 286 ps Ethernet 00:90:A2:CD... WesternD_CD:... EC:F4:BB:5E:01:3C ARP &0
Custom 2
Custom 3
Custom 4
Custom 5
Custom &
= £&j Data Types
Network
3 Transmit
(@) Errors
Changing — &= k]
No Match = - -
Details for "Ethernet EC:F4:BB:6E:01:3C to FF:FF:FF:FF:FF:FF
Completed Msg "
Message on Ethernet from Ethernet PCAP (ic|| name Value FF FF FF FF FF FF EC F2 .cvvuevan
=) o Networks = Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: Bro BB 6E 01 3C 0F 06 00 Ol .N.<....
neovL Address Resolution Protocol (request): 08 00 06 04 00 01 EC F4
Ethernet BB 6E 0L 3C CO A2 01 74 .n.<...t
00 00 00 00 00 00 CO A8
01 01
4| I LY KN I 3
Details |R9'VE-‘|'5|”9|
P | o B w37 iR | cglumns[Ethernet v” Setup ...] Review Buffer...
(=13 + (edit) s (edit) * (edit) + (edit) s (=dit) * (edit) No Bus Errors

Figure 18: Messages View with ARP Filter in Scroll Mode. In scroll mode, applying a filter will not cause older messages to
be cleared. After hitting the Erase button, only messages matching the filter will be shown, as displayed here.

Leave this filter active for the next part of the lab, but exit scroll mode.
» Press [.Gseol],

Vehicle Spy 3 now will resume collecting together ARP messages of the same type.

Part 1.2F Master Filtering Control

Lo

Filter

You can disable all filtering at once by using the button located far left
(Figure 15:G). This will cause Vehicle Spy 3 to ignore any filters entered into the filter row,
which will be retained, but grayed out.

» Disable Filtering: Press to turn filtering off.

Notice that all messages are displayed again as filtering is suppressed.

» Enable Filtering: Press to resume filtering.

And now the filter is applied again.

Version 1.0 - August 3, 2015 24 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 1.2G Using Details View

This extra area in the Messages View allows you to dig into the fields in any message to let
you see what'’s really going on in your network. It's an especially powerful tool for Automotive
Ethernet because you can use it to examine each of the layers of headers and data found in
complex encapsulated messages such as those used in TCP/IP.

You should see Details View in a window near the bottom of Messages View; the title will
begin with |1 JZ1 & EE{iT] (Figure 15:1). The button, located to the right of the
button at the top of the message display (Figure 15:H), can be used to turn Details
View off and on. As with the other buttons, it is highlighted in blue when enabled. Details View
is normally enabled by default, as you may recall from the demo we did in the User’s Guide,
where we temporarily disabled it and then turned it on again.

» Enable or Disable Details View: Press| “Jpetis |or[. ‘lpetils | to toggle the
Details View off and on. Stop with the view enabled.

The Details View window contains three panes. The information pane on the left (Figure 15:1-1)
shows a list of messages and decoded information about them. On the right is a byte/character
display of the selected message (Figure 15:1-3). In the center, you'll see an area with Name
and Value columns (Figure 15:1-2) that are used to display the values of decoded messages.
The contents of all of these panes will change depending on the type of message is selected

in the Messages View. The relative sizes of the three panes can be changed by dragging the
vertical dividers between them, just as we did with the Ethernet interfaces list.

Let’s start by looking at an ARP message. Conveniently enough we still have an ARP filter
applied in Messages View, so that should not be difficult to do!

» Select an ARP Request Message: Find an ARP message in Messages View that has a
Destination of Broadcast and click it.

Vehicle Spy 3 will highlight the chosen ARP message and display its information in the Details
View. You will see that this message contains an Ethernet header and an Address Resolution
Protocol header for the ARP Request message type. An example Details View display for an
ARP Request message can be seen in Figure 19.

Details for "Ethernet EC:F4:BB:6E:01:3C to FF:FF:FF:FF:FF:FF"

Message on Ethernet from Ethernet PCAP (icsenet.d| Name Value FF FF FF FF FF FF EC F4
Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: Broadcast BE 6E 01 3C 08 0 00 01 .n.<...

Address Resolution Protocol (request): 0% 00 08 04 00 01 EC F4

BB 6E 01 3C CO A8 01 74 .m.<...
00 00 00 00 00 00 CO A8
01 01

o4 mn 2

Figure 19: Initial Details View Display for an ARP Request Message.

Now let’s try a different message type.

Version 1.0 - August 3, 2015 25 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Filter for UDP Messages: Enter IPv4 in the EtherType filter field and UDP in the
Protocol field.

One of the UDP messages is displayed, which shows three header types: Ethernet, Internet
Protocol and User Datagram Protocol. If you select any of these, the corresponding header
bytes in the message will be highlighted in the data area on the right. Let’s try it.

» Select the Internet Protocol Header: Click the Internet Frotocol Version 4 header
in the information pane.

You should see 20 bytes highlighted in gray in the byte area, corresponding to the 20 bytes in
a standard IPv4 header (Figure 20).

Details for "Ethernet 103.12.120.216 to 192.168.1.116"

Message on Ethernet from Ethernet PCAP (icse | Name Value EC F4 EE
Ethernet, Src: WesternD_CD:D2:26 (00:90:A9: LS CD D2
& Internet Protocol Version 4, Src: 103.12.120.21 ollz1
User Datagram Protocol, Src port: 31998, Dst p .
sloElaT|
01] 7c
B4 40 R4
D6 B1 R3
2C E2 70
L »

Figure 20: Details View Display for a UDP Message with IP Header Highlighted. Here we have the Details View display for
a typical UDP message. When the IPv4 header is selected in the information pane, Vehicle Spy 3 highlights its 20 bytes in the
byte/character display area.

Next, let’s try drilling down into the headers to look at the fields they contain.

» Expand the Ethernet Header: Click the Ethernet header in the Details View
information pane, and then click the |+| button to the left of it.

Vehicle Spy 3 shows you the Destination, Source and Type fields in the Ethernet header
(Figure 21).

Details for "Ethernet 103.12.120.216 to 192.168.1.116"

Message on Ethernet from Ethernet PCAF (icse|| Name
= Ethernet, Src: WesternD_CD:D2:26 (00:90:A9:
Destination: EC:F4:BB:6E:01:3C

00 31 00 00 40 00 30 11 .1..@.0.
Source: WesternD_CD:D2:26 (00:90:A9:CD

Type: TPv4 AS 9B 67 OC 78 D& CO A8 ..Q.X...
Internet Protocol Version 4, Src: 103.12.120.21 01 74 7C FE FE 63 00 1D .t|..c..
User Datagram Protocol, Src port: 31998, Dst p B4 40 A4 BO 02 2F 25 8D .B.../%.
D6 B1 A3 8D 06 7E 1C EF
2C E2 70 85 19 8F 0D p oD

1| T | 3

Figure 21: UDP Message Details View with Expanded Ethernet Header. The same UDP message shown in Figure 20,
but with the Ethernet header selected and expanded to show its three fields. Notice the change to the highlighting in the byte/
character display area.

Next, let’s try the IP and UDP headers.

Version 1.0 - August 3, 2015 26 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Expand the Other Headers: Click the |+ buttons to the left of the
Internet Protocol Version 4 and User Datagram Frotocol labels.

Notice how Vehicle Spy 3 decodes all of the headers for you, describing what each field is,
and where relevant, what the field values represent. You may need to scroll down to see all the
fields due to the large number of fields in the IPv4 header.

You can even pinpoint the exact location of specific bytes in a header field.

» View the Data Bytes for the Time to live field: Under the
Internet Protocol Version 4 header, click the Time to live field header.

You will see a single byte on the right side of the display now highlighted in gray. The hex value
shown here should match the decoded decimal value in the information pane (Figure 22).

Details for "Ethernet 103.12.120.216 to 192.168.1.116"

= Internet Protocol Version 4, Src: 103.12.120 » || Name value EC F4 BE 6E 01 3C 00 90 ...nm.<..

Version: 4 L3 CD D2 26 08 00 45 20 ...&..E

Ithernet Header Le.ngth. 20 by‘t_es | 00 31 00 00 40 00 11 L1ell.
Differentiated services code point: 0x8

= B8 SB 67 OC 78 DE CO A8 ..g.x...

Explicit congestion notification: Mon ECN-¢
Total Length: 49 bytes

01 74 7C FE FE &3 00 1D .t]|..c..

Identification: 0x0 (0) | E4 40 A4 BO 02 2F 25 8D .@.../%.
Flags: 0x2 D6 Bl A3 8D 06 TE 1C EF ~..
Fragment offset: 0 2C E2 70 85 19 BF 0D f D

i Time to live: 48

4 1 | [

Figure 22: UDP Message Details View with IPv4 Header Expanded and TTL Selected. The same UDP message again,
this time with the IPv4 header expanded and the Time to live field selected in the information pane. Note that the value of the
field is 48 (decimal) corresponding to the byte value 30 (hexadecimal) in the byte/character display.

We’re done for now.

» Go Offline: Press [to go offline.

Version 1.0 - August 3, 2015 27 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.3 Using the Messages Editor and a Function Block Script to
Transmit Raw Ethernet Frames

With some Vehicle Spy 3 experience under our belts, we are ready to begin actually using the
EEVB to simulate Ethernet node functionality. We will start with a very simple demonstration
that programs one of the two EEVB nodes to regularly transmit a basic “raw” Ethernet
message. And even though this is our first EEVB demo, to help you get familiar with how to
use Vehicle Spy 3's Messages Editor and Function Block features, we’re going to dive in head
first by having you create the demo yourself rather than using a pre-made setup file. Don’t
worry, though—it’s actually quite easy, we will guide you through the process step by step, and
you'll learn a lot this way!

-

Note: A “raw” Ethernet message is one that only has Ethernet

headers and not those from any encapsulated higher-level
protocols such as IP or ARP. This is the simplest Automotive Ethernet
message type and forms the basis for the more complex messages
we will work with later in the Lab Manual. You can find much more
information about Ethernet message formats in your copy of
Automotive Ethernet - The Definitive Guide.

Part 1.3A Restart Vehicle Spy 3 and Load Custom Column Setup

Since we’re about to do something new, let’s restart Vehicle Spy 3 to ensure that we are
beginning with a fresh slate.

» Close Vehicle Spy 3: Select Exit from the File menu or press Alt+F4. Do not save
changes if you are asked.

» Start Vehicle Spy 3: Select ki Vehicle Spy 2 from the Windows Start Menu or click .

As we first saw in Lab 1.1, Vehicle Spy 3 remembers the last several setup files you have
used, listing them under the | Recent | tab on the Logon Screen. You should see 1.7 Custom
Column Setup here since we created it earlier in the Lab Manual and have used it since.

» Select Active Ethernet Interface: On the Logon Screen, click the radio button next to
the most active Ethernet interface.

» Load the 1.1 Custom Column Setup: Double-click 1.1 Custom Column Setup,
which should be on the | recent | tab. If you don'’t see it there, look under | My Setups .

We are now ready for business.

Version 1.0 - August 3, 2015 28 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 1.3B Create a Custom Raw Ethernet Transmit Message

Since this is a transmission demo, our first task is to create the message we will transmit using
Vehicle Spy 3's Messages Editor.

» Open the Messages Editor: Select *= Messages Editor from the Spy Networks menu.

The Messages Editor is used to define both receive and transmit messages. You can switch
between the receive side and the transmit side by clicking the | =cgeeve |and [2 Iesmt |
buttons near the top left of the screen. (Don’t worry about the button.) The currently
selected “side” is indicated by which of these buttons is highlighted in blue.

» Switch to Transmit Messages: If the button near the top left of the screen is
not already highlighted, click it.

Let’s make sure that Vehicle Spy 3 knows we want to work with Ethernet messages.

» Select the Ethernet Network: Click the [iTjl [=IiTTiTi [drop-down box, scroll down
through the list, and select Ethernet (Figure 23).

on Network [T V] E”"“l%ﬁl""l%”*'l@‘@nl
pic | g1) Hide Unused folor |

Network Protocol *

HS CAN4 (VNET B) CAN

HS CANS (VNET B) CAN

LINS (VNET B) LN

Ethernet DAQ (neoVT 3G) Ethernet

Ethernet Ethernet

MOST (VNET B) MOST

FlexRay 1A (VNET B) FlexRay

FlexRay 18 (VNET B) FlexRay

FlexRay2a (VNET B) FlexRay

FlexRay28 (VNET B) FlexRay

Figure 23: Selecting Ethernet in the Messages Editor.

Vehicle Spy 3 will remember this setting until you restart the program. The setting is also saved
in the current setup file. Come to think of it, we are always going to want this set to Ethernet,
so let’s update our column setup file now; this way, we won’t have to do it again.

» Save Setup File: Select Save from the File menu.
Okay, now we are ready to add the new message.

» Add a New Ethernet Message: Click the =P button to the right of the [EIlI = T4
drop-down box.

Vehicle Spy 3 will create a new message called Tx Message Ethernet 1 and open a window
pane where signals in the message can be viewed and edited (Figure 24).

Version 1.0 - August 3, 2015 29 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

File Sctup SpyMetworks Measurement Embedded Tools Scripting and Automation Run Tools Help
- | Offline PIatform:[{Nune) vl JM\—‘ 13, pata |'|
@@ Messages Edtor (B3] | @ Messages [52 | o
N e [Evmen | © oo) [T ethernet F+-lsmeloltits|@ @l

Key |Description EtherType |VLAN Protocal Source [Port | Destination [Port [Len |Raw Payload Bytes
r o o o o r o r o o
Tx Message Ethernet 1 Raw None 00:FC:70:00:00:01 00:FC:70:00:00:02

Setup for Tx Message Ethernet 1

Message Filter Specification

Mot available for this EtherType or Protocol

| Ethernet Payload |EmemetHeader‘

Equation |(Raw Valug) 0, 1,0,4 [Agor |

Signals in Message | |Byte 1 |Byte 2 |Byte 3 |Byte 4 |Byte 5 |Byte & |Byte 7 |Byte 8 |Eytes |

Description Type 7|6|5[4|3)2|1[a|7|6|5|4[3]2|1|a]7 6[5]|4|3[2|1)0]7|6|s[4]|3|2|1]a|7|&|s|4[3|2|1]0|?|6]5|4|3[2|1|0]7|6|5[4]3]2|1|a| 7| 6|5[4[3)2] 10| 7| 6] 5| 4]=

Mo Bus Errors

Figure 24: New Transmit Message Added in the Messages Editor.

Note the Key entry for this message, which will begin with out (and will normally be out0). The
key is the actual means by which the message is referenced internally within Vehicle Spy 3,
which allows us to change message names without affecting functionality. Let’s do that now,
since the default name is somewhat generic.

» Change Message Title: Double-click Tx Message Ethernet 1 under Description in
the transmit messages list. Enter the name Ethernet Lab 1.3 Frame instead (Figure 25).

Key |Description EtherType |VLAN |Protocal [Source |[Port | Destination [Port [Len [Raw Payload Bytes
e W e e N W e e W e

outd EthernetLab 1.3Frarne| » |Raw Mone 00:FC:70:00:00:01 00:FC:70:00:00:02

|

Figure 25: Changing the Transmit Message Description in the Messages Editor.

Notice that the EtherType for this message is Raw, indicating a simple frame with only Ethernet
headers; as we’ll see later on, Vehicle Spy 3 will also let you directly set up more complex
messages. Let’s take a look at the header fields.

Version 1.0 - August 3, 2015 30 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Note: In addition to a header, Ethernet frames also have a
footer transmitted after the frame’s data that contains a single
4-byte field called the Frame Check Sequence (FCS). This field
carries a cyclical redundancy check (CRC) code to allow the recipient
of a frame to detect many types of transmission errors. The FCS is
computed automatically by Vehicle Spy 3 and by the EEVB, and is
not needed by VSpy users, so it is not shown in message formats.

» Select Ethernet Header Fields: In the window pane near the center of the screen,

which should now be titled EZZL TR T 2 & T=T9 7= 0 5100 Be B T=T17TE, find the
signals in Message area, and click the tab labeled | Ethernet Header |,

You can see that Vehicle Spy 3 has automatically set up the standard three Ethernet frame
header fields, which are called signals in VSpy for consistency with the terminology used in
other automotive networks (Figure 26). The fields will be transmitted in the order shown, and
have sizes indicated by the byte display to their right: 6 bytes for each of Destination MAC
Address and Source MAC Address, and 2 bytes for EtherType or Length. (You won'’t be able to
see the full display of all three fields unless your screen is very wide or you use the scroll bar
on the bottom.)

Setup for Ethernet Lab 1.3 Frame

Description Hotkey

Ethernet Lab 1.3 Frame {No Hotkey) hd

Message Filter Specification

Mot available for this EtherType or Protocol

Signals in Message | Ethernet Payload | Ethernet Header

Equation |{Raw Value}|0,1,0,48
Signals in Message Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte & Byte 7 Byte 8 Byte 9
Description Type LR E R R EEEE PR EE R EEEEEEEEEEE EERE R B EE EERE R L
Anzlog 1 T T L S R B B E B BB EEE R R
Source MAC Address Analog BEECHBEBEEERERBEEEREE
EtherType or Length StateEncoded

4| 1 F

Figure 26: Default Ethernet Headers for Transmit Message in the Messages Editor. Note the scroll bar on the bottom,
used to allow you to view fields off to the right when they won't all fit; exactly what you see here will depend on the size of your
Vehicle Spy 3 window.

We have header fields but no actual data fields in our message yet; let’s rectify that.
» Select Ethernet Payload Fields: Click the | Ethemetpayioad | tab in the Messages Editor.

» Add an 8-Bit Signal: Click the *: button, located just below the label
signals in Message.

An 8-bit signal will appear called Signal 3. If you scroll to the right, you'll notice that its value is
in byte 15 of the message, after the standard 14-byte Ethernet header. Let’'s rename this field
to something less generic as well.

Version 1.0 - August 3, 2015 31 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Note: Why Signal 3? While it may not be obvious at first, this is
the fourth signal in this message, since it comes after the three
Ethernet header fields. VSpy numbers messages starting from 0.

» Change Payload Signal Name: Double-click E[EFEIBE and change the name to Lab 1.3
Data (Figure 27).

Setup for Ethernet Lab 1.3 Frame

Description Hotkey
EthernetLab 1.3 Frame
Message Filter Specification

Mot available for this EtherType or Protocol

Signals in Message | EthernetPayload | Ethernet Header
*y v = Equation |{Raw Value}|o,1,112,8 i Edit..

Signals in Message Byte 13 Byte 14 Byte 15 Byte 16 Byte 17 Byte 18 Byte 19 Byte 20 Byte 21
Description Type HEEREERBEEBEEERE [[| 7/8|5|4|3]2|1|0|7|8|5|4]3|2| 1|0 7|6|5|4|3|2| 1|0 7|6|5|4|3|2| 10| 7| 6|5|4|3] 2 1] | 7|6|54] 3

HEEE
[ah 1.3 Data Analog EEEBBEBE

] T +

Figure 27: Ethernet Payload Signal for Transmit Message. We have created an 8-bit field (signal) to be carried in our
transmitted Ethernet message. It is located in byte 15, after the 14-byte Ethernet header, and was shown here by using the
scroll bar.

Part 1.3C Examine and Change Transmit Message Field Values

Our basic transmit message is now complete, but while we’ve defined the message’s fields,
we haven't set their values yet. There are generally two ways to do this: manually editing them,
or assigning them values in a function block program. We’ll once again start with the simpler
method, manual assignment; this is accomplished via the Vehicle Spy 3 Tx Panel.

» Open the Tx Panel: Select & TxPanel from the Spy Networks menu.

The Tx Panel is split into two halves; on the left is a list of all transmit messages, along with
some controls, while on the right is an area where signals within a message are shown with
boxes for setting their values.

» Select the Ethernet Lab 1.3 Frame Message: On the left side of the screen, click
Ethernet Lab 1.3 Frame.

On the right side you will now see the four fields (signals) in our message: the three Ethernet
headers, and the Lab 1.3 Data field.

Depending on your window size, you may find that at first too much of the left-hand pane is
showing, while the values on the right are cut off after only a few characters. This is easily
corrected.

Version 1.0 - August 3, 2015 32 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Move Tx Panel Divider Bar: Find the divider that separates the messages list from
the message details and drag it to the left until the ¥alue column is fully displayed
(Figure 28). (The Raw Value column is not important at the moment.)

[_E Edit Transmit Messages] [x Disable Al Tx] Protocol: |Ethemet Signals for Ethernet Lab 1.3 Frame

Description Tx | Auto Tx Rate EtherTyr Description | In Dc|Sg Step Value Raw Value
krd F 7 rd Destination MAC Address +| -|'s 1 00:FC:70:00:00:02 !10806786

g 4 — Source MAC Address +| - | s 1 00:FC:70:00:00:01 '10806785
Ethernetlab 1.3 Frame i |Periodic None Raw EtherType or Length +] = | s T =a— 0
Lab 1.3Data + s 1 0

Figure 28: Tx Panel Display of Ethernet Transmit Message. Selecting the Ethernet Lab 1.3 Frame message on the left
displays its four signals and their current values in editable boxes on the right.

But wait... some of these fields already have values, which we never entered. Not to worry, this
is just another way that Vehicle Spy 3 makes life easier for you, in this case by filling in default
figures for message headers automatically. Here only three values were set, which would

have been easy enough to do ourselves. However, we’ll soon see how this feature becomes
increasingly valuable as we start working with longer message types, some of which can

have a dozen headers or more (including many TCP/IP messages). In the next lab we will see
where these defaults come from, and how to change them.

Let’s now put a specific value into our data field, which is currently blank.

» Set the Value of the Lab 1.3 Data Field: Double-click the empty field under the Valuge
column for Lab 1.3 Data, and enter 78 (Figure 29).

Signals for Ethernet Lab 1.3 Frame

Description| In|Dc |Sg Step Value Raw Value

Destination MAC Address +| - | 5| 1 00:FC:70:00:00:02 '10806736

Source MAC Address [+ -] 5] 1 00:FC:70:00:00:01 10806735

EtherType or Length [+ -] s 1 Raw Ethernet 0

I T -) s I 7 -~ I

Figure 29: Setting Payload Signal Value for Transmit Message.

Each transmission of the Ethernet Lab 1.3 Frame message will now send the value 78 in its
Ethernet frame payload.

Part 1.3D Create a Function Block Script to Tell the Ethernet EVB to Transmit the
Message

Our message is now ready for transmission, so it's time to write a (very) short program to tell
the Ethernet EVB to send it. We'll instruct one node to simply send the same message out on a
regular interval, let’'s say every 2 seconds.

Let’s go to the Function Blocks area and create a new function block.

» Open the Function Blocks Window: Under the Scripting and Automation menu, select

= Function Blocks _

Version 1.0 - August 3, 2015 33 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Create a New Function Block Script: Click the dr button at the top left of the screen,
and then select X&) ==t from the pop-up that appears (Figure 30).

Figure 30: Adding a Function Block Script.

In the upper part of the screen you will now see a new function block, creatively titled Function
Block 1 and with a Key value of tst0. A lower pane shows that this script currently has 10
empty program steps. Since we will have only one function block, its name is unimportant, so
we can leave it as the default.

We only need our program to do two things: transmit our message and then wait 2 seconds
before doing it again. The transmit step comes first.

» Create a Transmit Step: Double-click the Description field in Step 7 and select
Transmit. Then hit Enter. Ignore the message that appears, as it will go away as soon
as we select a message. Notice that the default comment moves to the Comment
column.

» Select Ethernet Lab 1.3 Frame to Transmit: Double-click the field that currently
contains Select Message in the Walug column for Step 1. A menu appears listing the
transmit messages currently defined in VSpy; of course, there is only one right now, so
click Ethernet Lab 1.3 Frame, which has been conveniently pre-selected for you.

» Enter Comment for Transmit Step: Double-click the Comment field and replace the
default value (// TODO: Add step commands here) with Send Lab 1.3 raw Ethernet
frame.. Vehicle Spy 3 will add the double-slash (“//”) comment header for you.

While comments do not affect the operation of a script, they are still very important, because
they serve as a function block’s documentation. Explaining what each step does in a program
may seem like extra work, but is essential when longer or more complex function blocks need
to be maintained or modified weeks or months down the road.

At this point your Vehicle Spy 3 window should look something like Figure 31.

Version 1.0 - August 3, 2015 34 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help

[/ = offline

E] @ Plaﬂorm:’{NDne)

v] [Desktop1

=8 Messages Editar @l @ Messages @l B Ty Panel @ :— Function Blocks @|

*-ldmelo |0 s

Key |Description | Type

StartType |Running

b @i\ @ seus

i i

{40 Function Block 1 Seript

Immediate Stopped

Seript | Start

Function Block 1

S i m@| o[e

Step | Description | value

‘ Comment

5w o 3 g e

i + [edit) + [edit)

B Transmit Ethernet Lab 1.3 Frame

+ [edit)

Figure 31: Function Block Script After Adding Transmit Step.

Let’s now add the delay step.

No Bus Errors

» Create a Wait For Step: Double-click the Description field for Step 2 of the script and

select Wait For.

» Change the Wait Time: Double-click the default entry in the Value field (0.001000
sec) and then press the = key to bring up the Expression Editor. Enter 2000 in the
Expression field (Figure 32) and either click [_2<__] or press the Enter key.

» Enter Comment for Wait Step: Enter the following comment for this step: Wait for 2

seconds before transmitting again..

Version 1.0 - August 3, 2015

35

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Enter Expression s &8 =]
Enter Expression for signal [Help] [oK.] [Cancel]
D Custom Format
Description
Expression | 2000]
[Evaluate as text Discrete Values
F« Expression Builder
X Messages sarty: SR oleulator Fane!
i3 Database =
5 Fnd / - -]
ETx Messages =
F-Signal Groups > +
oo 2 s Cs)
‘@lobs <>
g] P
“App Signals = L E]E]
“=Networks >>
:Bf}-NDdES << * 4 Application Signals
" Misc iy Name
ZFunction Blocks bit2(
9 Physical I0 bit3(M Add
ELogger bita(
[EUser Signals bit5(Hide auto-generated items
bite(
<]|| |viezC
Present Toggle m byte0O(Ehsll
Update Rate {rel) | & bytel(Ut
Update Rate (abs) byte2(
Per Second b a3
Count yte3(
Change Count one(il
Start Time il *

Figure 32: Setting a Numeric Value in the Expression Editor. This is the simplest use of the Expression Editor; later in the
Lab Manual we'll see that we can do much more here.

Vehicle Spy 3 will ignore the 8 remaining blank steps, but let's delete them just for cleanliness
(and so we can learn how to delete steps, of course!)

» Delete Blank Steps: Click on Step 3, then hold down the Shift key and click on Step
10 to highlight the 8 blank entries. Then either right-click and select Ciglete from the
context menu (Figure 33), or press the == button just above the script steps.

Step | Description
1 Transmit

2 Wait For
3

Run To Step

Force L4

Y Copy

2t Paste Before

[[[
o P s

1 &+ 4

Inzart After —

Insert Before

Delete

Figure 33: Function Blocks Right-Click Menu. Here we have highlighted eight blank steps that we are preparing to delete.

Finally, we must tell Vehicle Spy 3 that we want this program to run on the EEVB as soon as
it is loaded, but not to run on the PC itself. We do this by changing the Start parameter for the
block.

» Change the Start Type: Click the [start | tab. Then click the drop-down box that currently
contains Start Immediately and change this to Start Immediately Embedded Only

(Figure 34).

Version 1.0 - August 3, 2015 36 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Start Function Block 1

Start lmmediatelx '1

Start Immediately
Manual Start

Use Start Expression
Start Immediately Embedded Onl
r

[Automatically restart when complete

[“]Enable Hardware Acceleration
Timing Precision || 5tart on logger wake up
[Automatic | [lstoponiogger sieep

Figure 34: Function Blocks Start Tab. Changing the start type from Start Immediately to Start Inmediately Embedded Only
will ensure that our script runs on the EEVB without a duplicate copy also running within Vehicle Spy 3.

In the function block summary at the top of the screen, you should now see Immediate
Embedded in the line for Function Block 1 under Start Type (though you may need to widen
the column to see the full text).

Part 1.3E Define a Receive Message to Match Our Transmit Message

In a moment we will send our program and custom Ethernet message to the EEVB. Before
we do, however, we need to be sure to define a receive message that matches our transmit
message. This will let Vehicle Spy 3 recognize and decode our special message so we

can see its fields properly in Messages View. (As we’ll see later on, this is only needed for
messages we are defining in EEVB scripts, not for those that run natively within VSpy.)

Vehicle Spy 3 keeps the most recent windows you have used in tabs along the top of the
display, so you can switch between views easily. Let’s use this feature to switch back to the

Messages Editor.

» Return to the Messages Editor: Click on the |== MessagesEditar| tab, located in the row
just below the [/ button. If the tab is not present (perhaps because you closed the
Messages Editor) then just select == MessagesEditer from the Spy Networks menu.

Next, we create a receive message simply by duplicating our transmit message.

» Copy the Transmit Message to the Receive Side of the Messages Editor: Click on
Ethernet Lab 1.3 Frame, right-click it, select Capy T from the pop-up menu, and
then choose Recene (Figure 35).

EtherType |\c'L.&N |Promoo| |Scuroe |Port |Deshnahcn |Port |Len |Raw Payload Bytes
i o i i i i i i r o
00:FC:70:00:00:01 00:FC:70:00:00:02

Key ‘ Description

= Paste

Copy Te Receive
Create Muttiplex Fiters Transmit

Add

Delete

Figure 35: Copying a Transmit Message to the Receive Side.

» Go to the Receive Messages Area: Click to switch to receive messages.

Version 1.0 - August 3, 2015 37 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You should now see a receive message with the same name as the transmit message. Notice
that the Key value here begins with in rather than out, since a receive message serves as
input to Vehicle Spy 3, while a transmit message is output.

Part 1.3F Save Setup File

We’re done creating our demo. Before proceeding let’s save it so we can easily retrieve our
program and message definitions. This will save time if we want to do this experiment again,
and also lets us to make new demos by changing this one rather than starting from scratch.

» Save the Setup File: Select Save As from the File menu. When the dialog box appears,
enter 1.3 Raw Ethernet Transmit.

Part 1.3G Send CoreMini to EEVB Node A

We will now send this setup to the EEVB so it can begin transmitting our message. This is
accomplished via the same process that we followed for the initial demo in the User’s Guide.

» Enter CoreMini Console: Click the Tools menu, hover over Utilities and then select
CoreMini Console... from the popup.

The CoreMini Executable Generator dialog box appears. Vehicle Spy 3 automatically compiles
your program into a CoreMini and connects to one of the nodes of the EEVB attached to your
PC. Near the bottom of the window you’ll see a drop-down box next to the word Device, which
should by default be displaying the serial number of your EEVB’s Node A or Node B in the form
EExxxx, with the node label also present for clarity (Figure 36).

CoreMini Executable Generator . ™ i

Buid | SD Card Partiton | Advanced Settings | User Files | [£

) Warning wait time expressions wil use ms time clock. Hide this warming by forcing time precision
3 Exe Compressed to 512 bytes (87.7 % of original size)

3 CoreMini Header (278 bytes)

3 Padding (1bytes)

39 Network Objects Compiled: 3 (14 bytes)

¥ 8 (8 bytes)

=) piled: 1 (78 bytes)78

0 Extended Messages Compiled: 1 (64 bytes)

09 Transmit Messages Compled: 1 (48 bytes)

@ Function Block Scripts Compiled: 1 (28 bytes)

@ Script Steps Compiled: 2 (4 bytes)

3 Large Function Blocks Script Steps Compiled: 1 (18 bytes)

3 Expression Stack Size: 1 (3 bytes)

0 Expressians 10 (10 bytes)

09 Extended Expressions {10 bytes)

3 Extended Expressions {10 bytes)Expression Operations 2args 0

) Expressions: Common 0 Extended 1 (12 bytes) Operations: 1 Arguments: 0 =

Campile CoreMini
CoreMini Compiled with Warnings at UTC 2015/04/17 15:40:25. Compile] [A3 Copy to Clipboard]

Wireless neoVl

Export a .wivi package for use with Wireless neoV]

Device Configuration and Gowrload

| |imeoVT (USE) §| neoECu (CAN) | RS232/UART/Buetooth

Configure Device (Bit Rates, Initial Pin States, Resistor Enables, etc...): | B8 Hardware Setup...

Download CoreMini :

Devies | Ethernet EVB EED002 (Node &)~ | 591398 [Intemal Flash ~ |

Extract.. [Z]Run CoreMini After Download [~ Advanced Settings

Connecf ted to device, SD Card: Not Connected

Figure 36: CoreMini Console. The CoreMini Console is used to send compiled message definitions and scripts to the
Ethernet EVB. Here the Device drop-down box shows that Node A is selected.

Version 1.0 - August 3, 2015 38 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Select Node A: If Node A is not shown in the drop-down box, click the box and select it.

» Download CoreMini: Press the button below the device drop-down box.
The message Sending CoreMini. appears in green text, followed a few seconds later by
neoVI updated (Time nnnn ms) - Success, where nnnn is the number of milliseconds
the task required.

That’s it! Your EEVB’s node is now running your program.

If you ran the demo in the User’s Guide, your board will still have a copy of the CoreMini used
for that setup running in Node B. Let’s clear that out now.

» Select Node B: Click on Node B in the drop-down box.

» Clear CoreMini: Press the button. After a few seconds the message Cleared
CoreMini will appear.

» Close CoreMini Console: Close the console by pressing Esc or clicking the [se3sl
button top right.
Part 1.3H Go Online to View Transmitted Messages
Now let’s go online to see the messages that we told the EEVB to transmit.

» Select EEVB Ethernet Interface: Return to the Logon Screen. Click the radio button
for the Ethernet EVB in the Ethernet Interfaces list.

» Go Online: Press [M to go online.

Now let’s switch to Messages View, and set a filter so we only see the message we told the
EEVB to transmit.

» Switch to Messages View.

» Enter Message Type Filter: Enter Lab 1.3 in the Filter row for the Description column.

Now you should see just Ethernet Lab 1.3 Frame messages in Messages View (Figure 37).

Version 1.0 - August 3, 2015 39 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

1.3 Raw Ethemet Transmit.vs3 - Vehicle Spy [=HC i_hj
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
(0~ onlie (coreiniactive).. (s3] (8] F+] patorm: 1onc @ (]| @ osieop A pata |-
Tu Panellgﬂ Function Blocks \Eﬂ @
L %riter] [»oadd | [G scoll | [Tlpetails | [¥|expand E] [&T Time Abg [M Pause] [¥ Erase] Fmd:@ .
i X ‘Cnunt |ﬂme |Tx ‘Er ‘%L Description ‘SBUFEE ‘Src Pnrt‘Deshnannn |D5t Pnrt|Eﬂ'verType‘PrnmcnI|VLAN‘LEn
p— At || EETE \ [] [L1
= 1.999850'5 Ethernet Lab 1.3 Frame Intrepid_00:00:01 Intrepid_00:00:02 Raw &0
Custom 1
Custom 2
Custom 3
Custom 4
Custom 5
Custom &
(= &3 Data Types
Network
@) Transmit
@) Errors
Changing — |4 [3
B
Completedi g Message on Ethernet from Etl| Name Value 00 FC 70 00 Q0 02 00 FC ..Pu.... :
BisNemoie | Bthernet, Src: Intrepid_00:00/ - pegtination MAC Address Intrepid_00:00:02 | 70 00 00 01 00 00 $E 00 p.....N.
neoVl Source MAC Address Intrepid_00:00:01 (|00 00 Q0 00 00 00 00 00
Ethernet EtherType or Length Raw Ethernet 00 00 Q0 00 00 00 00 00
Lab 1.3 Data 78 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 Q0 00 00 00
00 00 00 00

« [l G

Details ‘ Re'versmg‘

:}-‘- | w00 R 10 JA i ‘ o2 Columnlethemet v” Setup ...] Review Buffer...
+ jed

i + (edit) * (adit) it) * (edit] * (edit] * [edit) No Bus Errors

Figure 37: First Ethernet Frames Received from Ethernet EVB. You should see something like this when you go online for
the first time to see your EEVB in action.

Notice that the Time column shows that a new message arrives approximately every 2
seconds (though the number is not exact because of natural variations). Since this is a raw
Ethernet frame, the Source and Destination columns show MAC addresses. These begin

with Intrepid because the first three bytes of every MAC address are the organizationally
unique identifier (OUI) of the device’s hardware manufacturer; in this case the device is the
Ethernet EVB, so the manufacturer is Intrepid Control Systems. Vehicle Spy 3 recognizes and
automatically decodes many common OUIs to enhance readability.

Let’s take a closer look at the message.

» Display Message Signals: Find the [+| button on the left of Ethernet Lab 1.3 Frame
in the upper window pane and click it.

You will now see the three Ethernet header fields we looked at before, and also our custom
data field, Lab 1.3 Data. The data field has the value 78. Let’s expand the message within the
Details View.

» Expand Ethernet Message Details: Open the Details View, if necessary, by clicking
the button. Then press the [#] button to the left of the Ethernet entry in the
Details View pane.

Version 1.0 - August 3, 2015 40 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You will see duplicated here the same Ethernet header information from the message
summary above, along with the values in those headers. Notice also that in the center of the
Details View we can now see Name/Value pairs for each of the fields in the message.

» Select the Data Field: In the middle part of the Details View, click on Lab 1.3 Data.

Notice that the byte 4E is highlighted in gray; this is the 15th byte of the message,
corresponding to the (decimal) value of 78 we put in the Lab 1.3 Data field.

1.3 Raw Ethernet Transmit.vs3 - Vehicle Spy ‘ ‘ E@g
File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help
i Platform: (Mone) AN [Desktop 1 % Data |~
wva Messages Edtor [52| @ Messages (23] | B TxPanel [52]| = Function Blocks (53 | ™
[Tepier] [=w=add | [@scrol | [Tl petils] @Expand E] (&7 Time Abs|[M Fause] [¥ Erase] Find: | Des
i x |Cour|t "ﬁme ‘Tx |Er |ZAL Description ‘Source ‘Src Port‘Desﬁnaﬁon |Dst Pnrt|EmarType‘Pmtnml|VLAN|Len
pp— A | | NETE \ || | [T]
= ova 1.999820 5 EthernetLab 1.3 Frame Intrepid_00:00:01 Intrepid_00:00:02 Raw 60
Custom 1
setem B+ Destination MAC Address = Intrepid_D0:00:02 [FC70000002]
Custom 2 2% Source MAC Address = Intepid_00:00:01 [FC70000001]
Custom 3 ,'{R EtherType or Length = Raw Ethernet [0]
Custom 4 £% Lab 1.3Data = 73 [4E]
Custom 5
Custom 6
= E§ Data Types
Network.
3 Transmit
(@) Errors
- <
Changing —| 4 [m "
Mo Match Details for "Ethernet Lab 1.3 Frame"
Completed Msg Message on Ethernet from Et| name value 00 FC 70 00 00 02 00 FC ..p.....
5 7t Networks 9| = Eth;m;t' irc: I?rt];enIdd_UUUU:UUU Destination MAC Address Intrepid_00:00:02 |70 00 00 01 00 00 m 00 p..... E
estination: Intrepid_00:01
neoVl 00 00 00 00 00 00 00 00 00 ..iuuuns
Saurce: Tntrepid_00:00:01 Source MAC Address Intrepid_00:00:01
Ethernet Type: Raw EtherType or Length Raw Ethernet 00 00 00 00 Q0 00 Q0 00
iLab 1.3 Data 78 00 00 00 00 00 00 00 00 .uiuuuns
00 00 00 00 00 Q00 00 00
00 00 00 00 00 00 00 00
00 00 00 00
<] r
Details |RE‘VE"’Si”9|
1
o ‘ wo RE w0 @ i3 | vhe Columns[Ethernet vu Setup ...] Review Buffer...
1
ey * (adit) * [edit) * (edit) * (edit) * (edit) * (adit) No Bus Errors

Figure 38: Ethernet Transmission Details. Here we have expanded the Ethernet Lab 1.3 Frame message and highlighted
the Lab 1.3 Data field, showing its value of 78 (decimal) or 4E (hexadecimal).

Feel free to look around some more at the message details before proceeding to the next lab.

Version 1.0 - August 3, 2015

41

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.4 Reviewing and Modifying Ethernet Templates and Setup Files

We saw in the prior lab that Vehicle Spy 3 will conveniently provide default values for header
fields in Ethernet messages, and that we can change these values if desired in the Tx Panel.
However, there may be situations where you always want to use a particular set of field values,
and needing to edit the fields in the Tx Panel each time would be inconvenient. In this lab

we’'ll learn how to change the default values themselves by editing Vehicle Spy 3’s Ethernet
templates. As part of this process, we’ll also learn how to modify VSpy setup files, using the
one we created in the previous lab as a starting point.

An example of a global change that one might wish to make to default values would be
customizing the default MAC addresses used in Ethernet frames. Vehicle Spy 3 comes set to
use addresses beginning with the three-byte OUI assigned to Intrepid Control Systems, which
is 00:FC:70. In this lab, we’ll modify the Intrepid value to the OUI 72:34:56 belonging to a
fictional organization. We’ll then adjust the previous demo to use the new value in source and
destination addresses.

Part 1.4A Restart Vehicle Spy 3 and Load the 1.3 Raw Ethernet Transmit Setup File

Let’'s again restart Vehicle Spy 3 to ensure that we are beginning with a fresh slate, and then
load the setup file we created in Lab 1.3.

» Close Vehicle Spy 3: Select Exit from the File menu or press Alt+F4.
> Start Vehicle Spy 3: Select = Vehicle Spy 2 from the Windows Start Menu or click &.

As we first saw in Lab 1.1, Vehicle Spy 3 remembers the last several setup files you have
used, and lists them under the | recent | tab on the Logon Screen. You should see 1.3 Raw
Ethernet Transmit here since you created it in the preceding lab.

» Load the 1.3 Raw Ethernet Transmit Setup: On the | recent | tab, double-click the entry
1.3 Raw Ethernet Transmit to load the setup file from the previous lab.

Vehicle Spy 3 will automatically load the view you were on when you saved the file, which
should be the Messages Editor if you followed the steps in Lab 1.3 exactly, but may be
something different. Note the tabs along the top of the screen for the various windows used in
making that Setup file (l@ MessagesL |“'-“ Messages Edit0r|, |E. T F'ane|| and | Function Blocks|)_

Part 1.4B Verify Correct Operation of the Setup

We have now restored the previous operating environment, and EEVB Node A should still be
running the same CoreMini from before as well. To confirm this, let's go online, switch into the
Messages View, and take a look around.

» Go Online: Press [to go online.

» Switch to Messages View: Click the | € Messages| tab or select Messages from the Spy
Networks menu.

Version 1.0 - August 3, 2015 42 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Enter Message Type Filter: Enter Lab 1.3 in the Filter row for the Description column.

You should once again see the Ethernet Lab 1.3 Frame message every 2 seconds. If you wish,
examine its details to verify that it is the same as before.

Part 1.4C Examine and Modify Ethernet Template Values for Raw Ethernet Frames

Now let’s take a look at where the default values in that message came from, and change them
to use the new 12:34:56 OUI for MAC addresses in raw Ethernet frames.

» Switch to Messages Editor: Click the |=+= MessagesEditor] tab or select Messages Editor from
the Spy Networks menu.

» Open the Ethernet Packet Template Editor: Click on the & button (Figure 39:A). It
can be found at the far right end of the row that contains the [=wgecsive | and [2 Trnsmt |

buttons.
| e S
wripting and Autemation Bun Tools Help
+[(None) % [4]| [B Desktop1 @ pata |~
% Function Blocks [£2 | A i
B) + - | (ot s lo alE] .,
otocol Source Port Destination Port Tx Msg Color Edit Ethernet Packet Templatesh
w e ? w e e e
00:FC:70:00:00:01 00:FC:70:00:00:02 Mone |

Figure 39: Ethernet Packet Template Editor Button. This image shows the right-hand part of the VSpy Messages Editor
window. The Ethernet Packet Template Editor button is highlighted, along with the balloon that appears when you hover over it.

Note: If you are using a small Vehicle Spy 3 window, you may
need to widen it in order to see the Ethernet Packet Template
Editor button.

After pressing the button, the Ethernet Packet Template Editor window appears. There are
templates for dozens of message types and variations here; fortunately, the first in the list, Raw
Ethernet Frame Template, happens to be the one we want. You can see here the standard
three Ethernet frames and the values we saw previously in our custom message (Figure 40).

Version 1.0 - August 3, 2015 43 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Ethernet Packet Template Editor o e S

lHaw Ethernet Frame Template v] [Rastore Default] l OK] l Cancel]

Packet Field Value
Destination MAC Address 00:FC:70:00:00:02;
Source MAC Address 00:FC:70:00:00:01
EtherType or Length Raw Ethernet

Figure 40: Ethernet Packet Template Editor. By default the editor starts with the raw Ethernet template selected, which
conveniently is the one we want to work with. (Note that the editor window was reduced in height for this screenshot; it will
normally open much larger to accommodate templates that have many more fields than the one for raw Ethernet.)

Let’s change the values now.

» Change the Default Destination MAC Address: Double-click the Value field for the
Destination MAC address; the current value will be highlighted. Press the Home key,
then type 123456 and press Enter. Vehicle Spy 3 will automatically add the colons for
you, resulting in the current value of 00:FC:70 being replaced by 12:34:56. The rest of
the MAC address (00:00:02) will be retained without change.

» Change the Default Source MAC Address: Repeat this process for the source MAC
address default; the end value should be 12:34:56:00:00:01.

» Save Changes: Click [o< |to save the changes for this template.
The field defaults have now been changed. If you like, you can enter the Ethernet Packet
Template Editor again to verify that the new values have “stuck”.
Part 1.4D Examine the Transmit Message
Let’'s go back and take a look at the transmit message we've already defined in this setup.
» Switch to the Tx Panel: Click the [& TsPsnel tab.

» Select the Ethernet Lab 1.3 Frame Message: Click on Ethernet Lab 1.3 Frame, just
as you did in Part 1.3C.

Notice that the Destination MAC Address and Source MAC Address are the same as they were
before. This is because we only changed the defaults for these values, so they will only appear
in new raw Ethernet messages.

Part 1.4E Create New Transmit and Receive Messages Using New Default Values

Let’s create a replacement for our current message that uses the new defaults. This process
is similar to the steps we followed near the start of the last lab, but since you are now used to
doing this, we won't spell everything out in quite as much detail. We'll save the setup under a
new name so we preserve our old one.

» Go Offline: Press [
» Switch to the Messages Editor, Transmit Side.

Version 1.0 - August 3, 2015 44 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Create a New Transmit Message: Press the 9k button to create a new Ethernet
transmit message, and name it Ethernet Lab 1.4 Frame.

Notice in the summary line for the message that the Source and Destination columns contain
our new defaults beginning with 12:34:56.

Key Description EtherType |VLAM Protocol Source Port Destination Port Len |Raw Payload Bytes
' N ' o o o o o o o

outd EthernetLab 1.3 Frame REM. Mone 00:FC:70:00:00:01 QO:FC:70:00:00:02

outl Ethernetlab 1.4Frame Raw i Mong 12:34:56:00:00:01 12:34:56:00:00:02

Figure 41: Ethernet Transmit Messages with Old and New Defaults. Above, the Ethernet Lab 1.3 Frame message
containing the original Vehicle Spy 3 defaults; below, the new Ethernet Lab 1.4 Frame message that has been automatically
set to the new defaults we set using the Ethernet Packet Template Editor.

» Add a Data Field: Click the *: button to add an 8-bit data field; name it Lab 1.4 Data.
» Switch to the Tx Panel.

» Review and Edit Field Values: Click on Ethernet Lab 1.4 Frame. You should see
here as well that the MAC addresses begin with 72:34:56. Enter the value 88 for the
Lab 1.4 Data Value field.

» Switch to the Messages Editor.

» Copy Transmit Message to Receive Side: Click on the Ethernet Lab 1.4 Frame
message, then right-click, choose Copy T, and then Receive. Click to
verify that the new message is present.

Part 1.4F Complete Modifications and Save New Setup File

We have a new message using our new default values, but we aren’t done yet. For one
thing, our function block script still refers to the old message; we also should get rid of the old
transmit and receive messages, which we don’t need any more. Finally, we should save this
new setup so we can restore it later if needed.

» Remove Old Messages: Click and then right-click and delete both the transmit and
receive versions of Ethernet Lab 1.3 Frame.

» Switch to Function Blocks.

» Edit Function Block Script Transmit Step: Double-click the Value field for step 1.
Change the entry from Ethernet Lab 1.3 Frame to Ethernet Lab 1.4 Frame.

» Update Transmit Step Comment: For consistency, change 1.3 to 1.4 in the comment.

» Save Setup File: Select Save As from the File menu. When the dialog box appears,
enter 1.4 Raw Ethernet Transmit 123456.

Version 1.0 - August 3, 2015 45 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 1.4G Send New CoreMini to EEVB Node A and Go Online

All we have to do now is download our updated setup and go online to see the results.

» Download CoreMini: Enter the CoreMini Console and download the new CoreMini to
Node A of your EEVB using the same process described in Part 1.3G.

» Go Online: Ensure that the EEVB is the selected Ethernet interface and press [M.

» Switch to Messages View.

» Update Message Filter: Change the value in the Filter row for the Description column

from Lab 1.3 to Lab 1.4.

You should now see Ethernet Lab 1.4 Frame being received by Vehicle Spy 3 in the Messages
View every two seconds (Figure 42). Examine the details to verify the new MAC addresses
and that the data field is now Lab 1.4 Data with a value of 88 (or 58 in hexadecimal).

» Go Offline.

1.4 Raw Ethernet Transmit 123456.s3 - Vehicle Spy ‘ [E=N e
File Setup Spy MNetworks Measurement Embedded Tools Scripting and Automation Bun Tools Help
LE_' gn_ﬁie_(go_rgl'u!ilﬂz_|c_t'n_re_).:._! Platform:| (None) 4| |9, | | (B Desktop1 % Data |~
ova Messages Editor [52 | @ Messages B3| B Ty Panel |El|:- Function Blacks |E|| o
[sriter | [==add | [&seol | [Tlpetails | ¥ Expand E] [T Time Abs|[™ Pause || B save | [¥ Erase] Find: | Des
w5 Count | Time Tx |Er |& Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAM | Len
L b &
Filter Lab 1.4
=) oo Messages
=] o%a Ea 1.999847 s EthernetLab 1.4 Frame 12:34:56:00:00:01 12:34:56:00:00:02 Raw &0
Custom 1
Hstom ::“: Destination MAC Address = 12:3%:56:00:00:02 [123456000002]
Custom 2 B¢ Source MAC Address = 12:3%56:00:00:01 [123456000001] .
Custom 3 AF, EtherType or Length = RawEthernet [0]
Custom 4 Af Lab1.4Data = 838 [59]
Custom 3
Custom &
(=) Ef Data Types
Network
@ Transmit
i@ Errors
h <
Changing —| 4 [9 "
Ne Match Details for "Ethernet Lab 1.4 Frame"
Completed M *
orPerEa e Message on Ethernet from Et| name Value 12 34 56 00 00 02 12 34 .4V....4
=) g Networks) Ethernet, Src: 12:34:56:00:0/ . pactination MAC Addres 12:34:56:00:00:02 | 56 00 00 01 00 00 [00 W..... g
neaVl Source MAC Address 12:34:56:00:00:01 ||00 00 00 00 00 00 00 00
Ethernet EtherType or Length Raw Ethernet 00 00 00 00 00 00 00 00
Lab 1.4 Data a8 00 00 00 00 00 00 00 00 .ueven..
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 *
4 i | b
Details |Re\rersing|
1
P | o e ouwo @ W | WL Columns[Ethernet v| setup.. | ReviewBuffer...
1
i *+ (adit) *+ (adit) *+ (adit) *+ (edit) *+ (edit) *+ (edit) Mo Bus Errors

Figure 42: Modified Raw Ethernet Frames Received from EEVB. This image shows our modified raw Ethernet frames,
containing MAC addresses beginning with 12:34:56, being displayed in Vehicle Spy 3 as they are received from the EEVB.

Version 1.0 - August 3, 2015 46

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 1.4H Restore Default Ethernet Template Values for Raw Ethernet Frames

Changes made to Ethernet templates persist even when new setups are made or Vehicle Spy
3 is restarted. Since we’re done with our lab now, and the rest of the Lab Manual assumes
that we are using the preset values programmed into Vehicle Spy 3, we should change back
the values we modified in Part 1.4C. Fortunately, this is easy to do, as VSpy includes a way to
reset a template back to its original value—the “default default”, if you will.

» Open the Ethernet Packet Template Editor: Click the |== MessagesEditar| tab or select it from
the Spy Networks menu. Then click on the E button.

» Reset Raw Ethernet Packet Template: Click the button, and then click
ok |

The original values beginning with 00:FC:70 will now be restored for the raw Ethernet template.

Version 1.0 - August 3, 2015 47 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.5 Setting Up a Transmission and Response Exchange Using
Ethernet Frames

In Lab 1.3 we created a simple Vehicle Spy 3 setup file that tells one node of the EEVB to
regularly transmit a single raw Ethernet message. We’'ll now build on that experiment by having
one node transmit and the other respond to it. This represents a simplified version of the
request/reply mechanism used by many networking protocols, which we’ll explore further when
we tackle ARP in Section 2 and other protocols later in the Lab Manual.

We will make use of both the VSpy setup file we created in Lab 1.3 and an additional pre-made
one as well. One node will regularly transmit a raw Ethernet message containing a single byte
of payload data; the other node will look for this message, read the data, compute double its
value, and then transmit this as a reply. We’ll then modify this functionality to make it a bit
smarter, learning a little more about function block scripts in the process.

Part 1.5A Reset EEVB Node A to Raw Ethernet Transmit CoreMini from Lab 1.3

Assuming you followed the steps in Lab 1.4, Node A of your EEVB is now running a modified
setup that uses the changed MAC addresses we dealt with in that lab. Let’s restore the node
back to running the original version from Lab 1.3.

» Load Raw Ethernet Transmit Setup File: Start Vehicle Spy 3 if it is not already
running. Then from the Logon Screen, select 1.3 Raw Ethernet Transmit from either the
| Recent | or | My Setups| tabs.

» Download CoreMini to Node A: Enter the CoreMini Console and send the CoreMini to
Node A of your EEVB. Please refer to the detailed procedure in Part 1.3G if you need a
refresher on the exact steps required.

Part 1.5B Load Raw Ethernet Response Setup File and Send to EEVB Node B

Now let’s load another setup file, this one containing messages and a function block script that
we will send to EEVB Node B.

» Load Raw Ethernet Response Setup File: Go back to the Logon Screen. From the
My Setups| tab, double-click 7.5 Raw Ethernet Response. Choose to discard changes if
prompted.

» Download CoreMini to Node B: Go to the CoreMini Console. Click the drop-down box
and select the entry corresponding to your EEVB’s Node B (Figure 43). Then download
the CoreMini.

» Exit the CoreMini Console.

Version 1.0 - August 3, 2015 48 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Device Configuration and Download
neoVI (USB) | neoECU (CAN) | RS232/UART/Bluetooth |

Configure Device (Bit Rates, Initial Pin States, Resistor Enables, etc...): [EE Hardware Setup...]

Download CoreMini :

evice.[gtheret Ev8 EE0002 (Node &) v S9720% [Internai Fash ~ |
Ethernet EVB EE0002 {Node A
Ethemet EVE EEQ003 (Node B)

Extract...

Run CoreMini After Download Advanced Settings

Connected to device, 5D Card: Not Connected

Figure 43: Selecting EEVB Node B in the CoreMini Console.

Part 1.5C Examine the Raw Ethernet Response Setup File

Before we go online, let’s take a quick “guided tour” of this setup file to see how it works.
Loading 1.5 Raw Ethernet Response should have put you in the Messages Editor, on the
receive side; if you are not there, please go there now.

You will see two messages here (Figure 44). The first, Ethernet Lab 1.3 Frame, is identical to
the one we used in Lab 1.3, containing the same Lab 1.3 Data field, and is defined here to tell
EEVB Node B what message to look for. The second is the response we will transmit, which
contains the field Lab 1.5 Response Data; it is here on the receive side so that the messages
we transmit will be properly decoded for display in the Messages View.

File Setup Spy[MNetworks Measurement Embedded Tools Scripting and Automation Run Tools Help
- offline E] P\arform:[(Nung) v] (&} Desktop 1 (3, pata ‘V|
’:Messa;esl{mtm (F Messages [22 || B TwPanel[22 || B Function Blocks [52 | o
[on etwori [T El+-lsme«/si¢s@ @,
| Destination
o
: 00:FC:
ini Ethernet Lab 1.5 Response : : 00:FC:

Setup for Ethernet Lab 1.5 Response

Description [¥]Enabled
Ethernet Lab 1.5 Response

Message Filter Specification

Not available for this EtherType or Protocal —

Signals in Message | Ethernet Payload | Ethernet Header

Elj j Equation |{Raw Value}D, 1, 1123] [# Edi.] [T Live Edit

Signals in Message |

yte 1 |Byte 2 B B B B
7]

B yte 3 yie 4 |Byte 5 yte & |Byte 7 yie 8 |[Bytes
Desaription Type Bl s3] 2[3[2] 10| 3]a[5 432[]2 5 o[2]32 o] a[5 3 2[][5 o] 2|32 o] 3] o] 5 < 3]2[]2 5 o] <] 3[2]]3] o] 43
Analog]

N

+ (=dit) * (adit) + (adit) * (adit) + (adit) No Bus Errors

Figure 44: Receive Messages for Ethernet Lab 1.5 Response Setup. The response setup has two messages defined in the
receive area: the message we are looking for from Node A, and the message we are sending from Node B.

Version 1.0 - August 3, 2015 49 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Notice that Ethernet Lab 1.3 Frame has a Source of 00:FC:70:00:00:01 and a Destination of
00:FC:70:00:00:02, while Ethernet Lab 1.5 Response has the opposite MAC addresses.

» Switch to the Transmit Side.
Here we just see our response message, identical to the version on the receive side.

» Review Function Block Script: Click the | = FunctionEiocks| tab or select & Function Blocks from
the Scripting and Automation menu.

The script is slightly more complex than the one we used in Lab 1.3, but still quite
straightforward (Figure 45). Basically, all it does is wait until an Ethernet Lab 1.3 Frame
message is received from Node A, and then transmit the response message. Take a look at the
comments to see what happens in each step.

Step | Description Value Cormment
1 x‘a Wait Until Eﬁ?ﬁr}net Lab 1.3 Frame (Present) /{ Don't do anything until we see an Ethernet Lab 1.3 Frame transmission from Mode A.
2 setval {Ethernet Lab 1.3 Frame (Present) /f When we do see a message, set the "Present” flag to 0 so this script is not triggered again until the
et Vale :in0-0F =0 next instance of the message.

{Lab 1.5 Response Data (Value) . .) »

3 Set Value ‘outD-sig3-0} = {lab 1.3 Data (Value) !/ Compute the value qf the Lab 1.5 Reply Data ﬁ_eld in the Response message as double the value of
" . + the Lab 1.3 Data field in the message from Node A.
tin0-sig3-0}*2

4 B Transmit Ethernet Lab 1.5 Response /f Transmit the response.

Figure 45: Function Block Steps for Ethernet Lab 1.5 Response Setup. The script waits for a message from Node A, fills
in the data field with double the value received, and then transmits.

Part 1.5D Go Online to View Transmission and Response Messages

Now let’s see our two nodes in action!
» Switch to Messages View.
» Enter Message Filter: Enter Lab in the Filter row for the Description column.
» Go Online: Press [,

You should see the Ethernet Lab 1.3 Frame and Ethernet Lab 1.5 Response messages, with
the count increasing every 2 seconds.

's 3

Note: If you see only Ethernet Lab 1.3 Frame and not Ethernet

Lab 1.5 Response, this may be because you forgot to download
the CoreMini to Node B. Also, be sure that the BroadR-Reach cable
is connecting the two nodes, as this is the mechanism by which
Node A's message is received by Node B. Finally, try pressing and
releasing the CPU reset button for Node B (component B13 in Figure
2 of the EEVB User’s Guide).

Let’s expand the messages for a closer look.

Version 1.0 - August 3, 2015 50 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Expand the Two Messages: Click the |+| button to the left of the Ethernet Lab 1.3
Frame and Ethernet Lab 1.5 Response screen entries in the main Messages View.

You should see a display similar to Figure 46. Notice that the value of Lab 1.3 Data is 78, while
that of Lab 1.5 Response Data is 156.

1.5 Raw Ethernet Responsews3 - Vehicle Spy ‘ @M
File Setup SpyMNetworks Measurement Embedded Tools Scripting and Automation Bun Tools Help
By %’% @Desk‘topl %, pata |~
i
[] [=epdd | [@seol | [Tl petails | [#Expand (9] [&T Time Abs[M Pause | Save | [X Erase |[] Find: |Des
o x{ Count | Time Tx |Er %l Description Source Src Port | Destination Dst Port | EtherType | Protocal | VLAN
- Filter Lab
(=) oo Messages
B oha E6 1.999850s Ethernet Lab 1.3 Frame Intrepid_00:00:01 Intrepid_00:00:02 Raw
Custom 1
ustom 2%, Destination MAC Address = Intrepid_00:00:02 [FC70000002]
Custom 2 B¢ Source MAC Address = Intrepid_00:00:01 [FC70000001]
Custom 3 ::“:. EtherType or Length = RawEthernet [0]
Custom 4 A% lab1.3Data = 78 [4§]
Custom 5 = ova [1.999840s Ethernet Lab 1.5 Response Intrepid_00:00:02 Intrepid_00:00:01 Raw
o+ it = i -0
Custom & s, Destination MAC Address = Intrepid_00:00:01 [FC70000001]
B+ Source MAC Address = Intrepid_00:00:02 [FC70000002]
(=) &4 Data Types oA
B+ EtherType or Length = RawEthernet [0]
Metwork o
Y Lab 1.5 Response Data = 156 [8C]
3 Transmit
i@ Errors
h <
Changing —« [3
No Match Details for "Ethernet Lab 1.3 Frame"
Completed Ms *
P N Message on Ethernet from Eth| name Value 00 FC 70 00 00 02 00 FC ..D.....
=) g Networks [Ethernet, Src: Intrepid_00:00) . pegtination MAC Address Intrepid_00:00:02 |70 00 00 01 00 00 4E 00 p..... N.
neoVl Source MAC Address Intrepid_00:00:01 {00 00 00 00 00 00 00 00
Ethernet EtherType or Length Raw Ethernet 00 00 00 00 00 00 00 00
Lab 1.3 Data 78 00 00 00 00 00 00 00 00 ..vewven..
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00
4 |l b
Details |Reversing|
1
= | w0 ofe w37 iR | oo Columns’Ethernet v|[Setup ...] Review Buffer...
1
iz *+ (adit) *+ (adit) * [edit) *+ (edit) *+ (edit) *+ (adit) Mo Bus Errors

Figure 46: Message Details for Ethernet Lab 1.5 Response. Vehicle Spy 3 sees the original messages sent by EEVB Node
A and the responses sent by Node B.

Now let’s look at the messages in sequential order so we can see the request/reply nature of
the exchange more clearly.

» Collapse the Two Messages: Click the [=] buttons next to each message to hide their
signals.

» Enter Scroll Mode: Click the button to enter scroll mode.

You can now see that the Ethernet Lab 1.3 Frame message is sent about every two seconds,
and the Ethernet Lab 1.5 Response message follows in just a few hundreds of microseconds
after it (Figure 47).

Version 1.0 - August 3, 2015 51 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Line |Time Tx |Er |Description Source Src Port | Destination Dst Port | EtherType

Filter Lab

oo 263 2001679 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 264 174 ps Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw
o 265 2001680 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 266 183 ps Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw
o 267 20016959 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 268 182 ps Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw
o 269 2001665 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 270 198 ps Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw
o 271 20016785 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 272 186 ps Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw
o 273 2001679 s Ethernet Lab 1.3 Frame 00:FC:70:00:00:01 00:FC:70:00:00:02 Raw
o 274 229 s Ethernet Lab 1.5 Response 00:FC:70:00:00:02 00:FC:70:00:00:01 Raw

Figure 47: Ethernet Lab 1.5 Response Message Timing. Node A sends a frame about every two seconds, while Node B
sends its response very quickly after each Node A transmission is received.

» Enter Static Mode: Click again to switch from scroll mode to static mode.

Part 1.5E Investigate the Impact of Changes to Receive Message Parameters

The transmission of a response message is triggered by Node B recognizing the messages
sent by Node A. What happens if we change the definition of the receive message?

» Go Offline.
» Switch to Messages Editor, Receive Side.

» Edit the Source MAC Address Field of the Ethernet Lab 1.3 Frame Receive
Message: Double-click the Source entry for Ethernet Lab 1.3 Frame, and then change
the last digit from 1 to 3.

» Download CoreMini: Send the CoreMini to Node B.
» Go Online.
» Switch to Messages View.
Now instead of both messages, we have neither... or do we?
» Change Message Filter: Change Lab in the Filter row to 00:FC:70.

You'll now see that we are still getting a frame every 2 seconds, which is in fact Ethernet
Lab 1.3 Frame. It isn’t being recognized as such by Vehicle Spy 3 because we changed the
definition of that message to only match on a source address of 00:FC:70:00:00:03. There is
also only one message because Node B isn’t recognizing the message as an Ethernet Lab
1.3 Frame. This means the function block is never triggered, and so the Ethernet Lab 1.5
Response message is never sent.

Let’s undo these changes so we are back where we started.

» Go Offline.

Version 1.0 - August 3, 2015 52 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Edit the Ethernet Lab 1.3 Frame Receive Message Again: Go back to the
Messages Editor and change the Source entry for Ethernet Lab 1.3 Frame back to
00:FC:70:00:00:01.

Send CoreMini to Node B.

Switch to Messages View.

v vy

Change Message Filter: Change the Description column filter back to Lab.
» Go Online.
Verify that the original behavior of the two nodes has been restored.

» Go Offline.

Version 1.0 - August 3, 2015 53 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 1.6 Adding Intelligence and Control to Ethernet Transmission and
Response Exchanges

So far we have only looked at function block scripts that are entirely linear in nature: they

do the same thing every time. However, Vehicle Spy 3 actually supports a powerful array of
instructions to let you build rather complex and intelligent programs. One of the most important
sets of commands is the “If .. Else .. End If’ construct, which allows you to add conditional
decision-making to your scripts. We also have input devices on the EEVB that we can exploit
to allow us to have direct control over the exchange process. Let’s put these features to work.

Part 1.6A Load Raw Ethernet Response Setup File, If Necessary

If you are doing this lab right after Lab 1.5, your EEVB is likely already set up correctly and you
can skip this part. If you aren’t continuing from the previous lab, or if you want to be absolutely
sure that the EEVB is properly configured for this one, follow these steps.

» Load Raw Ethernet Transmit Setup File: From the Logon Screen, select
1.3 Raw Ethernet Transmit from either the |Recent| or [My setups| tabs.

» Download CoreMini to Node A: Go to the CoreMini Console. Select Node A and
download the CoreMini to that node.

v

Load Raw Ethernet Response Setup File: Go back to the Logon Screen and load
1.5 Raw Ethernet Response.

Download CoreMini to Node B.

Switch to Messages View.

vvyy

Enter Message Filter: Set the Description column filter to Lab.
» Go Online.

Verify that the two nodes are operating as they did in Lab 1.5.
» Go Offline.

Part 1.6B Add a Conditional Statement to the Response Script

Let’s change how we determine the value of the Lab 1.5 Response Data field. Instead of
always setting it to double the value of the incoming Lab 1.3 Data field, we will double the
value if it is greater than 127, and halve it otherwise.

» Switch to Function Blocks: Click the Functian Blacks| tgb.

» Add If Statement: Click Step 3. Press the | # Before | button (just above the script steps)
to add a new step. Then select If under the Description field. Ignore the error that
appears.

Version 1.0 - August 3, 2015 54 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Enter If Statement Condition: Double-click on the ¥alue field, which currently contains
Equation Not Set. The Expression Editor appears. Select ==Rx Messages from the
menu on the left side if it is not already highlighted. Then, under Ethernet Lab 1.3 Frame,
double-click Lab 1.3 Data; this will cause values to appear in the Description and
Expression fields above. Click at the end of the Expression field, after the curly brace.
Add _< 128 to the end of the field, then press Enter or click [_oc__|,

» Enter If Statement Comment: Add this comment to the new command’s Camment
field: If incoming Lab 1.3 Data field is less than 128, send back double the value..

» Add Else Step: Click Step 5, currently the last command in the script. Press the
button and select Else in the Description field.

» Enter Else Statement Comment: Add this comment to the new statement: If incoming
data field is greater than or equal to 128, send back half the value..

» Add End If Statement: Click on Step 6, the last command again, and press
once more. Choose End If in the Description field.

Any errors should disappear once the End If statement is added. However, we are not quite
done yet: we already have the command to compute double the incoming value when it is
below 128, but not the one that halves it when it is 128 or higher. We could write this step,
but why bother entering a new step from scratch when it is much easier to just duplicate the
existing command and make a small change?

» Copy and Paste Step 4: Click Step 4 and press the 52 button. Then click Step 6 and
press [&.

You will now have a duplicate of the Set Value command between the Else and End If.

» Edit Second Set Value Statement: Double-click the Value field for Step 6. In the
Expression field of the Expression Editor, change the * (for multiplication) to / (for
division) and save the changes. In the Comment field, change double to half.

Your script should now appear similar to Figure 48 (though there may be superficial differences
depending on screen size and column widths).

Step | Description Value Comment

1 ﬂ Wait Unil {Ethernet Lab 1.3 Frame (Present) :in0-0} /{ Don't do anything until we see an Ethernet Lab 1.3 Frame transmission from Node 0.

2 Set Value {EthernetLab 1.3 Frame (Present) :in0-0} = 0 f{ When we do see a message, set the "Present” flag to 0 so this script is not triggered again until the

3 E‘ If {Lab 1.3 Data {Value) :in0-sig3-0} < 128 /{ 1f incoming Lab 1.3 Data field is less than 128, send back double the value.

4 et Value {Lab 1.5 Response Dat@ OJ'E!|LIE) outD-sig3-0} = [/ Compute the value qf the Lab 1.5 Reply Data field in the Response message as double the value of
{Lab 1.3 Data {Value) :in0-sig3-0}*2 the Lab 1.3 Data field in the message from Node 0.

5 LEEke // If incoming data field is greater than or equal to 128, send badk half the value,

5 et Value {Lab 1.5 Response Data [\J'a_lue) ioutD-sig3-0} = f/ Compute the 'v'a!ue of the Lab 1.5 Reply Data field in the Response message as half the value of the
{Lab 1.3 Data {Value) :in0-sig3-0}/2 Lab 1.3 Data field in the message from Node 0.

7 [Rendrf

8 & Tranemit Ethernet Lab 1.5 Response /{ Transmit the response.

Figure 48: Function Block Steps for Ethernet Lab 1.5 Conditional Setup. Four additional commands introduce some
“smarts” into our response script.

Version 1.0 - August 3, 2015 55 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Let’'s save this so we can get back here quickly when needed.
» Save Setup File: Choose Save As from the File menu and enter the name 1.6 Raw
Ethernet Response Conditional.

Part 1.6C Download New Response Script to EEVB and Change Transmit Script to
Test Operation

Okay, let’s get this new script into the EEVB and see how it works.
» Download CoreMini to Node B.
» Switch to Messages View.
» Enter Static Mode (If Necessary).
» Go Online.
» Expand the Ethernet Lab 1.3 Frame and Ethernet Lab 1.5 Response Messages.

Let’s take a look... hey, nothing changed: the Lab 1.3 Data value is still 78 and Lab 1.5
Response Data is still 156. Well, that’s not a big surprise: 78 is less than 128, so it is still being
doubled like it was before. Let’'s change that 78 to a larger number to see what happens.

» Go Offline.

» Load Raw Ethernet Transmit Setup File: Load the 1.3 Raw Ethernet Transmit setup
file from the Logon Screen.

» Switch to Tx Panel.

» Change Lab 1.3 Data Field Value: Click Ethernet Lab 1.3 Frame on the left. Then
click on the value 78 and change the number to 178.

» Download CoreMini to Node A: Be sure to remember to change the node, since we
most recently downloaded to Node B.

We’ve now changed our transmitted message. Let’s load the response setup file again (since it
has all the message definitions we need) and then go online.

» Reload Conditional Raw Ethernet Response Setup File: Go back to the Logon
Screen and reload 1.6 Raw Ethernet Response Conditional, the file we saved earlier
with our changed script. You can discard changes when prompted.

» Switch to Messages View.
» Enter Message Filter: Set the Description column filter to Lab.
» Go Online.

Check the value of Lab 1.5 Response Data and you will see that it is 89, of course half of 178;
the Details View for the Ethernet Lab 1.5 Response message can be seen in Figure 49.

Version 1.0 - August 3, 2015 56 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Details for "Ethernet Lab 1.5 Response”

Message on Ethernet from Eth| Name Value 00 FC 70 00 00 01 00 FC ..Pu...-
Ethernet, Src: Intrepid_00:001 . pegtination MAC Address Intrepid_00:00:01 |70 00 00 02 00 00 53 00 p.....Y.
Source MAC Address Intrepid_00:00:02 |00 00 00 00 00 00 00 00
EtherType or Length Raw Ethernet 00 00 00 00 00 00 Q0 00 ...v.an-
Lab 1.5 Response Data 89 00 00 00 Q0 00 00 00 00uus
00 00 00 Q0 OO0 00 00 00
00 00 00 QO OO0 00 00 00
00 00 00 0O

4. m k

Figure 49: Details View for Conditional Ethernet Lab 1.5 Response Message.

Part 1.6D Add Pushbutton Control to the Response Script

As we saw in the User’s Guide demo, each node on the EEVB has a pushbutton that can be
used to provide input to Vehicle Spy 3. Let’s change our program so that a response is only
sent when the pushbutton on Node B is held down.

We’'re assuming you are continuing from the preceding example, so you should already have
the 1.5 Raw Ethernet Response Conditional setup file in Vehicle Spy 3. If not, load it now.

To implement this new functionality we only need to add a single “If .. End If’ pair around the
command that transmits the response message. Let’s do it!

» Go Offline: Always a good idea as some areas of VSpy can’t be changed while online.
» Switch to Function Blocks.

» Add If Statement: Click Step 8 of the script, which should currently be the Transmit
command. Click and then select If under the Description field.

The values of the EEVB pushbuttons are accessible within Vehicle Spy 3 as Physical 10
inputs, and are considered switches.

» Enter If Statement Condition: Double-click on the ¥alue field, and the Expression
Editor appears. Select [EPhysical I0 from the left-hand menu, scroll down to Switches
and expand it using the [+| button. Double-click Switch 1; the Expression field’s value
will become {Switch 1 (Value) :neo0-sw0-0-index(0)}. Press Enter or click [__ox_].

» Enter If Statement Comment: Add this comment: Only transmit if the node’s
pushbutton is down..

's a

Note: A conditional expression normally requires a value to
compare against, but this is a special case. An EEVB
pushbutton’s value is 0 normally, and 1 when it is held down. We
want to transmit when it is down, so we would expect to need “= 1”
in our condition. However, Vehicle Spy 3 evaluates conditions as
true when 1 and false when 0, so the “= 1” would be redundant.

Version 1.0 - August 3, 2015 57 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Add End If Statement: Click the Transmit step again (now Step 9) and this time press
[# after || Select End If for this program step.

The revised script should have 10 steps and look something like Figure 50.

Step | Description Value Comment
1 :‘:'] Wait Until {Ethernet Lab 1.3 Frame (Present) :in0-0} /{ Don't do anything untll we see an Ethernet Lab 1.3 Frame transmission from Mode 0.
2 Set Yalue {Ethernet Lab 1.3 Frame (Present) :in0-0% = 0 //When we do see a message, set the "Present” flag to 0 so this soript is not triggered again until the
3 E,‘ If {Lab 1.3 Data (Value) :ind-sig3-0} < 123 J{ If incoming Lab 1.3 Data field is less than 128, send back double the value.
{Lab 1.5 Response Data (Value) :out0-sig3-0} // Compute the value of the Lab 1.5 Reply Data field in the Response message as double the value of
Set Value
= {Lab 1.3 Data (Value) :in0-sig3-0}*2 the Lab 1.3 Data field in the message from Node 0.
5 [hEke /{ 1f incoming data field is greater than or equal to 128, send back half the value.
{Lab 1.5 Response Data (Value) :outl-sig3-0} [/ Compute the value of the Lab 1.5 Reply Data field in the Response message as half the value of the
4 Set Value
= {Lab 1.3 Data (Value) :in0-sig3-0}/2 Lab 1.3 Data field in the message from Mode 0.
7 [REndrf
3 B If {5witch 1 (Value) :neold-swi-0-ndex({0)} /{ Only transmit if the node’s pushbutton is down.
5 B Transmit Ethernet Lab 1.5 Response J{ Transmit the response.
10 [ZEndrf

Figure 50: Function Block Steps for Ethernet Lab 1.5 Conditional Setup with Pushbutton Control.

Now let’s save our changes. We'll use a new filename again—it's good practice to preserve
older files in case you want to undo your changes.

» Save Setup File: Select Save As from the File menu. When prompted, enter the name
1.6 Raw Ethernet Response Conditional Pushbutton.
Part 1.6E Send Response Script to EEVB and Check Operation
Let’s send our revised script to Node B of the EEVB.

» Download CoreMini: Download the CoreMini to Node B. The CoreMini Console is
likely set to Node A from earlier lab steps, so check it and change it if necessary.

» Switch to Messages View.
» Go Online.
You should see Ethernet Lab 1.3 Frame messages but no responses.

» Hold Down the Pushbutton for Node B: This is component BO9 in Figure 2 of the
EEVB User’s Guide.

Now Ethernet Lab 1.5 Response messages should start appearing, and will continue until you
release the pushbutton.

Congratulations, you’'ve completed Section 1 of the Intrepid Ethernet EVB Lab Manual!

Version 1.0 - August 3, 2015 58 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Section 2 Experiments with the TCP/IP Address Resolution
Protocol (ARP) Over Ethernet

Now that we've got basic Ethernet message traffic analysis and generation under our collective
belts, it's time to start our extensive look at how the TCP/IP family of protocols work in an
Automotive Ethernet environment. And we’ll begin this beginning with the Address Resolution
Protocol (ARP), which is used on Ethernet networks to allow devices to discover their
neighbors’ MAC addresses to enable message transmission.

We start with ARP rather than a more “defining” protocol such as IP for two reasons. First,
ARP is one of the simplest to understand of the TCP/IP protocols, making it easy for us to
understand real ARP messages and to simulate the operation of the protocol within Vehicle
Spy 3 and the Ethernet EVB. Second, despite this simplicity—and despite now being over 30
years old—ARP is still a widely-used protocol on TCP/IP+Ethernet networks, making learning
about it relevant to any student of Automotive Ethernet.

In this section you will accomplish these goals:
e |Learn how ARP works on modern networks and observe it in action.

e |oad, examine and run a script on an EEVB node to periodically generate ARP Request
messages.

e Set up the other EEVB node to listen for and respond to ARP Request messages with
ARP Reply messages when appropriate.

e |earn more about using conditional expressions and values within function blocks.

e Use application signals, custom variables that provide extra flexibility to function block
scripts.

e Understand better how Vehicle Spy 3 interprets and recognizes various messages.
e Dock VSpy windows so you can work with more than one view at a time.

e See how to have the Ethernet EVB send messages to the PC instead of to the other
EEVB node.

e Work with two Vehicle Spy 3 instances at the same time.

e Use the Ethernet EVB, Vehicle Spy 3 and a RAD-Moon media converter to perform
bidirectional message exchange. (Requires optional hardware.)

This section builds upon what you learned in Section 1 of the Lab Manual. Going forward we
assume you already know how to switch among common Vehicle Spy 3 views and windows,
including the Messages View, Messages Editor, Tx Panel and Function Blocks area, so these
tasks aren’t spelled out. You should also be familiar with how to start and stop Vehicle Spy 3,
go online and offline, load and save VSpy setup files, and download a CoreMini to your EEVB.
If you need a refresher on any of these, please review the appropriate parts of Section 1.

Version 1.0 - August 3, 2015 59 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

An Overview of the Address Resolution Protocol

The following brief description of ARP is intended to provide some basic background for those
new to TCP/IP. For a more thorough explanation of the protocol, please refer to Chapter 14 of
Automotive Ethernet - The Definitive Guide.

Communication among network devices is accomplished using addresses that indicate where
they are located, much like street addresses. However, most networks use two address types:
one at a lower level linked to actual hardware, and one at a higher, more abstract level. In the
case of Automotive Ethernet, these are usually MAC addresses and IP addresses respectively.

IP addresses are used for logical message exchanges between devices on internetworks
such as the Internet. For example, a Web browser running on a tablet in Germany can make

a request to a server in Brazil using the server’s IP address; the server will use the tablet’s IP
address to send back the requested Web page. While virtual in concept, this communication is
implemented as many hardware-level transactions, since that’'s where all data transfers occur.
Thus, each step requires a hardware-level address. On a TCP/IP+Ethernet network there is a
constant need to translate between IP addresses and MAC addresses, and this is ARP’s job.

Suppose Device A has a TCP/IP message for Device B, a neighbor on its AE network. It must
look up Device B’s IP address in a special table to find its MAC address, and if it is not there,
then attempt to determine the address using the following simplified exchange (Figure 51):

¢ ARP Request: Device A broadcasts an ARP Request message to all other devices on
the local network that says “What is the MAC address of Device B?”

e ARP Reply: All devices receive the broadcast and check the IP address in the request
against their own IP addresses. Device B will find a match and then send an ARP Reply
back directly to Device A saying “That is my IP address and here is my MAC address.”.

Now Device A can deliver the message using Ethernet. It will do so, and update its local table
(called an ARP cache) so that the next time it needs to send to Device B, it will have that
device’s MAC address already. And that's ARP in a nutshell!

Device A Device B
IP Addr: IPA IP Addr: IPB
Hardware Addr: #213 Hardware Addr: #79

Device C Device D
IP Addr: IPC IP Addr: IPD
Hardware Addr: #46 Hardware Addr: #114
Figure 51: Dynamic Address Resolution Using ARP. Device A needs to send data to Device B but knows only its IP address
(IPB) and not its hardware address (#79). A broadcasts an ARP Request asking to be sent the hardware address of the device
using the IP address IPB. B responds back to A directly with an ARP Reply containing its hardware address.

Version 1.0 - August 3, 2015 60 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.1 Observing ARP in Action

We'll get the ball rolling in Section 2 in much the same way we did in Section 1: not using
the Ethernet EVB yet, but first looking at “real world” ARP messages. This will help us build
familiarity with how the protocol works before we start using it in active scenarios.

As was the case with Lab 1.1, be sure you are connected to a network of some sort before
proceeding or you won'’t see any ARP messages.

Part 21A Go Online and Filter to See ARP Messages

Let’s begin with a fresh new instance of Vehicle Spy 3, to clear out any settings from previous
labs.

» Close Vehicle Spy 3.
» Start Vehicle Spy 3.

Now let’s go online and start collecting Ethernet traffic. For convenience, let’s load the custom
column setup file we created in Lab 1.1 so that the Messages View is ready to show Ethernet
traffic.

» Select Active Ethernet Interface: On the Logon Screen, click the radio button next to
an active (non-EEVB) Ethernet interface, such as the device the PC uses to connect to
the Internet.

» Load Custom Column Setup File: Load 1.7 Custom Column Setup from the | Recent | tab,
or if it is not there, under | My Setups |,

» Go Online.

You should automatically be switched to Messages View. As we did before in Section 1, let’s
tailor the view so we can more easily spot the messages we are after while avoiding those we
do not care about.

» Set ARP EtherType Filter: Enter ARP in the EtherType column filter box.

Vehicle Spy 3 will now only show us ARP messages, with all others hidden. You should see

a few of them, with the number increasing slowly over time. Since ARP is a request/reply
protocol, however, the best way to observe it is to see the messages in sequential order—a job
tailor-made for the Messages View scroll mode:

» Enable Scroll Mode: Press the button.

Vehicle Spy 3 will show only new ARP messages that arrive, but older non-ARP messages will
still be present. Let’'s do some clutter reduction:

» Clear Messages View: Press to clear the Messages View.

Version 1.0 - August 3, 2015 61 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You will now see only ARP messages on the screen (Figure 52). Notice that you will generally
see the ARP messages arrive in pairs, exactly as expected, one request and one reply each.
However, this will not always be the case, as sometimes a request may not receive a reply.

1.1 Custom Column Setup.vs3 - Vehicle Spy E=RACA X)
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
LG_' Online (CoreMini active).. _! Platform:| (Maone) i) [%] | (B Deskiop1 [pata |~
ata Messages Editor [22 | @& Messages (£ o)
[T Filter] [e Add] [£ Scroll] [" Details] [V] Expand E] [A‘lTimeAbs][oy Pause] Save] [X Erase] Find: | Des
% x Line | Time Tx |Er |Description Source Src Port | Destination Dst Port |EtherType |Protocal | VLAM | Len
. Filter ARP
|=) oo Messages
= 1 Ethernet EC:F4:BB:6E... EC:F4:BB:6E:01... Broadcast ARP 42
Custom 1
ustom “';" 2 3494ps Ethernet 00:90:A9:CD...WesternD_CD:... EC:F4:BB:6E:01:3C ARP B0
Custom 2 S 3 29223096 Ethernet 00:26:5E: 58.... HonHaiPr_S8:7... Broadcast ARP 50
Custom 3 4 4 284.778ms Ethernet 00:90:A9:CD. .. WesternD_CD:... EC:F4:BB:6E:01:3C ARP &0
Custom 4 “';" 5 12ps Ethernet EC:F4:BB:6E. .. EC:F4:BB:6E:01... WesternD_CD:D... ARP 42
Custom 5 “‘;" 6 651.750ms Ethernet 00:25:5E:58... HonHaiPr_58:7... Broadcast ARP 60
Custom & “')?“’ 7 1.000135s Ethernet 00:26:5E:58... HonHaiPr_58:7... Broadcast ARF &0
=) kgl Data Types
Network
@) Transmit
@) Errors
¥ —
Changing —| ¢ +
Mo Match
Details for "Ethernet EC:F4:BB:6E:01:3C to FF:FF:FF:FF:FF:FF"
Completed Msg Message on Ethernet from Ethernet P| name value FF FF FF FF FF FF EC F4 vvuuunns
E|:B:,Networks (= Ethernet, Src: EC:F4:BB:6E:01:3C, D¢ BE 6E 01 3C 02 06 00 01 .n.<.
neovi # Address Resolution Protocol (request) 08 00 06 04 00 01 EC F& nnn....
Ethernet BE 6E 01 3C CO A8 01 74 .n.<...t
00 00 00 OO0 00 OO0 CO AE
01 01
] i v [b
Details |R9V9r5i”9‘
1
o | w0ome w7 R | Columns [Ethernet -" Setup ...] Review Buffer...
1
o * [(edit) * [(edit) * [edit) + (edit) adit) s [edit) No Bus Errors

Figure 52: “Real World” ARP Message Traffic. This image shows seven ARP messages received on a standard Ethernet
interface connected to the Internet. Notice that the last message is a duplicate of the one before it; the second was likely sent
because the transmitting device did not receive an ARP Reply within a full second after sending the first ARP Request.

Part 21B Manually Generate ARP Traffic on an Internet Connection

ARP messages are required for the proper operation of an Ethernet network. However, since
they only carry control information and not data, they represent overhead in the network. This
is why it takes several seconds to witness even a few ARP messages on a real network—ARP
caches are used so that ARP messages need only be sent when absolutely necessary.

The operation of the ARP cache on a Windows PC can be managed using a built-in program
called, unsurprisingly, arp. This utility allows the ARP cache on a machine to be examined
and manipulated. We can even delete the entire ARP cache with a command. If we do so, the
empty cache will cause the very next attempt to send data from the computer to generate an
ARP Request message, prompting an ARP Reply in return. Thus, using the arp tool, we can
conveniently generate an ARP message exchange any time we wish.

Version 1.0 - August 3, 2015 62 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Open Command Prompt: In the Windows Start Menu, enter cmd in the box labeled
Search programs and files. When the program cmd.exe appears, right-click it and
choose Run a5 administrator (Figure 53).

Programs (1)
B cmd.exe

[emd x| | seep ||

Figure 53: Opening a Windows Command Prompt.
» Clear Messages View: With Vehicle Spy 3 still online and in scroll mode, press

so we can more easily see the ARP messages we are about to generate.

» Delete ARP Cache: In the command prompt, enter arp -d * and then press the Enter
key.

You should immediately see ARP Request and ARP Reply messages show up in Vehicle Spy
3, as the PC attempts to find the MAC address of the router or other device on the network
through which it connects to the Internet (Figure 54).

» Go Offline.

» Close Command Prompt: Enter exit in the command prompt and press Enter to close
the box.

We’'ll use the ARP messages we generated here in the next part of the lab. If you need to
generate another exchange, you can just repeat the steps above.

Version 1.0 - August 3, 2015 63 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

r ~
@ 1.1 Custom Celumn Setup.vs3 - Vehicle Spy | = | [=] 22|
[~ online (CoreMini active)... ||=8| | [|[Fa] platform:| (None |||y | %] | (B Desktopl 5 Data |~
o%a pessages Editor | 2 @ Messages@ i3
[Seriter | [=caAdd | [& seoll | [Jpetails | [Expand |§| |&T Time Abs|| =™ Pause || Save | | X Erase || | Find: |Des .

o >< Line |T|me |Tx |Er |Descri|3tion |50urce Src Port|Destinaﬁon |Dst Port|Eﬂ1erType|Prob:coI |ULAN|Len
Filter ARP
- oo Messages
Cied 1 Ethernet EC:F4:BB... EC:F4:BB:6E:01:3C Broadcast ARP 42
Custom 1 ;
"g" 2 347 ps Ethernet 00:90:A9... WesternD_CD:D2:26 EC:F4:BB:6E:01:3C ARP &0
Custom 2
Custom 3
Custom 4
Custom 5
Custom &
= &4l Data Types
Network | = n
i A o T - | | ﬂ:h
@) Transmit BN Administrator: C\Windows\System32cmd.exe L]
@) Errors C:sWindowsssystem32>arp —d = :
Changing —|1 C:\Windows\system32>_
No Match i
Completed Msg T Message a
= o Networks = # Ethernet, g 1
neoVl 4 Address R4
Ethernet 1
m
Details |Revel %
7 o mow 3 | . Columns IEthernet - " Setup ...] Review Buffer...
1
iz . . + . .

Figure 54: Deleting the ARP Cache to Force an ARP Request/Reply Exchange. Immediately after clearing the PC’s ARP
cache using the arp command shown, Vehicle Spy 3 records the computer sending an ARP Request and receiving an ARP
Reply.

Part 21C Analyze an ARP Request/ARP Reply Message Exchange

We’'ll now take a closer look at the details of the ARP Request and ARP Reply messages we
just generated, and which are displayed in Figure 54. This will help us better understand how
these messages work in later labs, where we program the EEVB to simulate ARP behavior.

Let’s start by taking a look at the Source and Destination fields for the two messages. As
mentioned earlier, a standard ARP Request message is sent to the special MAC address
reserved for broadcasts, which is FF:FF:FF:FF:FF:FF. (This is shown by Vehicle Spy 3 as
Broadcast for greater readability.) The Source field of this message contains the MAC address
of the device sending the request, which in this example is EC:F4:BB:6E:01:3C.

The ARP Reply message is sent back from the device whose IP address matches the one in
the request. In this case (and many others) the responder is the local router, a device made
by Western Digital Corporation; its MAC address is decoded by Vehicle Spy 3 as WesternD_

Version 1.0 - August 3, 2015 64 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

CD:D2:26, which is the Source of the ARP Reply. The Destination of this message is, of
course, the Source of the ARP Request, EC:F4:BB:6E:01:3C.

Now let’'s examine the individual fields in these messages.

» Enable Details View, If Necessary: If Details View is not currently enabled, click

to turn it on.

» Select the ARP Request Message: Click the ARP Request message in the Messages
View.

There should be three lines in the Details View, the third of which will be Address Resolution
Protocol (request):. Let's expand this to look at its fields.

» Expand ARP Request Message: Click the [+] button to the left of
Address Resolution Protocol (request): in the Details View.

You should now see the individual fields (signals) of the ARP Request message in the Details
View information pane; the display for the example we have been using is shown in Figure 55.

Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: Broadcast (FF:FF:FF:FF:FF:FF)
=l Address Resolution Protocol (request):
Hardware Type: Ethernet (1)
Protocol Type: IPv4 (0x0800)
Hardware Size: 6 bytes
Protocol Size: 4 bytes
ARP Operation: Request
Sender Hardware Address: EC:F4:BB:6E:01:3C
Sender Protocol Address: 192.168.1.116
Target Hardware Address: 00:00:00:00:00:00
Target Protocol Address: 192.168.1.1

Figure 55: ARP Request Message Details.

Here’s a quick description of the fields in the ARP Request and what they contain:

e Hardware Type and Protocol Type: Codes that indicate the hardware-level and
higher-level address types being used. These are usually 1 and 0x800 for Ethernet and
IPv4 respectively, as you see here.

e Hardware Size and Protocol Size: The lengths of the hardware-level and higher-level
addresses; MAC addresses are 6 bytes long and IPv4 addresses are 4 bytes.

e ARP Operation: A value of 1 for an ARP Request or 2 for an ARP Reply, which VSpy
decodes for you into their descriptive equivalents.

e Sender Hardware Address and Sender Protocol Address: The MAC and IP
addresses of the device sending the ARP Request.

Version 1.0 - August 3, 2015 65 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

e Target Hardware Address and Target Protocol Address: The MAC and IP address
of the device that is the subject of the ARP Request; the former is ignored in an ARP
Request, since it is what we are trying to find out, and therefore is usually set to 0.

Now let’s take a look at the matching ARP Reply in our example.
» Click the ARP Reply Message: Click the ARP Reply message in the Messages View.

The Details View information pane will now show the ARP Reply message fields and field
values; the one for our example can be found in Figure 56.

B Message on Ethernet
Ethernet, Src: WesternD_CD:D2:26 (00:90:A9:CD:D2:26), Dest: EC:F4:BB:6E:01:3C

=l Address Resolution Protocol (reply):
Hardware Type: Ethernet (1)
Protocol Type: IPv4 (0x0800)
Hardware Size: & bytes
Protocol Size: 4 bytes
ARP Operation: Reply
Sender Hardware Address: WesternD_CD:D2:26 (00:90:49:CD:D2:26)
Sender Protocol Address: 192.168.1.1
Target Hardware Address: EC:F4:BB:6E:01:3C
Target Protocol Address: 192.168.1.116

Figure 56: ARP Reply Message Details.

If you click back and forth between the ARP Request and ARP Reply, you can see clearly how
the two messages work together. (Notice that you don’t have to expand the message fields
again.) The ARP Reply has Target Hardware Address and Target Protocol Address fields
equal to the Sender equivalents in the ARP Request. When the ARP Reply is received, the
value of its Sender Hardware Address field contains the MAC address that the original device
requested.

We’'re done now, so let’s go back to static mode and go offline.

» Enter Static Mode: Press [& seroll .

Version 1.0 - August 3, 2015 66 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.2 Sending Periodic ARP Requests from EEVB Node A

Let’s now turn our attention back to the star of our show, the Ethernet EVB. We will apply our
newly-gained expertise in the operation of the Address Resolution Protocol by programming
the two nodes of the EEVB to simulate ARP exchanges on an Ethernet+TCP/IP network. Along
the way we’ll also learn how to use Vehicle Spy 3’s docking feature to work with more than one
view at a time.

Part 2.2A Load ARP Request Setup File and Examine Messages and Function Block
Script

Even though we are working with ARP here rather than raw Ethernet, the basic structure of the
setup file for this lab is quite similar to the one we used in Lab 1.3. Not much would be gained
by having you create the setup manually, so to save time we will begin with a downloaded
scenario file.

» Load the ARP Request Setup: Go to the Logon Screen, click | My setups|, and then
double-click 2.2 ARP Request.

Vehicle Spy 3 will load the setup for this lab. Notice that again, along the top, tabs for several
windows are present for convenient switching. This is a handy tip to remember: any view tabs
open when you save a setup file are preserved when that file is loaded again later.

Let’'s now take a look at this setup to see what it does.
» Switch to the Messages Editor: Click the | Messages Edtar| tab,

The view will show the only message defined in VSpy for this setup, unsurprisingly called ARP
Request. It is identical on both the transmit and receive sides. If you look at the signals area
you will see two tabs, ARP Header and Ethernet Header, which contain the field values for the
ARP message and the Ethernet frame that carries it, respectively (Figure 57). The names here
should be familiar from looking at the ARP fields in Lab 2.1.

Description Enabled
ARP Reguest

Message Filter Specification

Mot available for this EtherType or Protocol

Equation [Ethernet@1n0,1,112,16 [tive Edit
Signals in Message Byte 15 Byte 16 Byte 17 Byte 18 Byte 19 Byte 20 Byte 21 Byte 22 Byte 23
Description Type EEEEEEREEEECEEEEREEEEERLEEEEEEREEEEE EEEE EEEEEERERE R EEEEEERE R R
setncoded EEEEREEREEREERE
Protocal Type StateEncoded CEBBOEEEEEEREERE
Hardware Address Length Analog HEHHEEIH
Protocol Address Length Analog 'EHE!IH
Operation StateEncoded EEBEBREEEBEEEEER
Sender Hardware Address Analog HEEE!
Sender Protocol Address Analog
Target Hardware Address Analog
Target Protocol Address Analog

Figure 57: ARP Header Signals for ARP Request Message. Note that in this image we have enlarged the signal area and
scrolled the byte display so that the start of the ARP signals in byte 15 is shown.

Version 1.0 - August 3, 2015 67 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Now let’s check out the function block script.
» Switch to Function Blocks: Click the | & FunstionBlacks| tab.

There is a single function block script called ARP Request Transmission. You can see that it
is indeed simple, with just two steps that cause it to transmit the ARP Request message once
every three seconds (Figure 58).

Step | Description Value Cormment
1 & Transmit ARP Reguest /f Send ARP Request message using values setin the Tx Panel,
2 :‘3 Wait For = 3000 ms ff Wait 3 seconds before sending again.

Figure 58: ARP Request Function Block Script.

Part 2.2B Compare ARP Request Message Values to Defaults Using Window Docking

Let’s take a look at the values of the fields defined in the Messages Editor. As before, these are
set in the Tx Panel.

» Switch to Tx Panel: Click the & T1«Pansl| tab.

» Select the ARP Request Message: Click the ARP Reguest message. You may need
to move the central vertical divider to see the ARP Request fields.

The values here are originally filled in by VSpy using the templates that we looked at in
Section 1, and can then later be changed. It might be instructive to compare these values to
the defaults in question; however, defaults are accessed from the Messages Editor view. No
problem, because VSpy includes the ability to work with multiple views at the same time. We'll
start by first docking the Tx Panel to the bottom of the screen.

» Undock the Tx Panel from the Top of the Screen: Click and drag the |& T«Parel tab
until a blue rectangle appears just below the mouse pointer.

Dragging the tab undocks the view from the top of Vehicle Spy 3; the blue rectangle is a
preview of the window (Figure 59). If you release the mouse button when the rectangle is in
the middle of the screen, the Tx Panel becomes a floating window.

Version 1.0 - August 3, 2015 68 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

=

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help

- Offline @ @ Platform:| (None) - @ [} Desktop 3, pata |~
,E T Panel (5 | e Messages Editor [22 || @ Messages [£2 1| = Function Blacks @"_‘ i»
—
T K Dasalns] Protocot: [£ _
o e . eccrintion| Tn

|Raw value
1 FRFRFFFEFRFF 281474876710655 |
1 00:FC:70:00:00:01 1084210806785
1 ARP 2054 *

1 Ethernet 1]
1 IPva 2048
1 & 5| *
1 4 4|
1 Request 1
1 D0:FC:70:00:00:01 1084210806785 *
1 10.0.0.1 167772161
1 00:00:00:00:00:00 0
1 10.0.0.2 167772162 +

< 3

o o (=dit) + [edit) o (edit) + [edit) o (edit) + [edit) Mo Bus Errors

Figure 59: Dragging a Vehicle Spy 3 View Tab. When you click and drag the Tx Panel, at first you will see a blue rectangle
representing the view, and releasing it will leave the view in a floating window. Notice the four semi-transparent docking icons
at the four cardinal points, representing potential docking locations.

» Drag the Tx Panel to the Bottom of the Screen: Continue to drag towards the bottom
of the screen until the pointer is over the [=! symbol there.

When you move the pointer over the “dock at bottom” icon, the blue rectangle fills the bottom
half of the screen to show you that the Tx Panel will fill that area if you let go of the mouse
there.

» Dock the Tx Panel at the Bottom of the Screen: Release the mouse.

The Tx Panel is now docked at the bottom of Vehicle Spy 3, occupying approximately the
lower half of the screen. The top of the screen should now be filled by the Messages Editor
(Figure 60), but you may see a different window, such as Function Blocks.

Version 1.0 - August 3, 2015 69 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

2.2 ARP Requests3 - Vehicle

File Setup Spy Networks Measurement Embedded Tools Scripting and Autemation Run Tools Help

- Offline @ Plaﬁnrm:l(None) vI [} Desktop [, Data |"
ova Messages Editor [2]| @ Messages [22 || 2 Function Elocks@ Lo
+-lsmelo(glte @S,
|Port |Destination lPort [TxMsg |Color

w N T r w
00:FC: 70:00:00:01 FF:FF:FFiFFFF:FF None

Ethernet

Setup for ARP Request

B Ty Panel [+ == .

(2 i T isssnces | [R DsaieAls | Protocol: [Eve] | B e S
Description Tx [AutoTx |Rate EtherType. Description| In|Dc | Sq | Step | value |Raw value
7 7 7 Destination MAC Address +| = | s 1 FRFEFRFRFRFF 281474976710655 | *
Source MAC Address +| - | s 1 00FC:70:00:00:01 1084210806785
| Periodic Mone ARP EtherType or Length (= |15 A 054
Hardware Type +| - s 1 Ethernet 1 .
Protocol Type # - | s 1 P4 2048
Hardware Address Length +| = | 1 & 6/ |
Protocol Address Length +| - | s 1 4 4 .
Operaton +| - | s 1 Request 1
Sender Hardware Address +| - | s 1 00:FC:70:00:00:01 1084210806785 | |
Sender Protocol Address + - | s 1 10.0.0.1 167772161 |
Target Hardware Address +| - | s 1 00:00:00:00:00:00 0
Target Protocol Address +| - | s | 110.0.0.2 167772162 |
< »
« “ (edit) * (edit) o (edit) * (edit) o (edit) * (edit) Ne Bus Errors

Figure 60: Tx Panel Docked at Bottom. Releasing the mouse button over the “dock at bottom” button causes the Tx Panel
to be docked in the bottom half of the screen. This allows the view in the next adjacent tab to be shown, which should be the
Messages Editor as seen here.

Now let’s go check out those defaults.
» Open the Messages Editor: If necessary, click the |= Messages Editar| tab.

» Open Ethernet Packet Template Editor: Click the E" button. (You may need to widen
the Vehicle Spy 3 window to see it).

» Select ARP Template: Select &RF Facket Template from the drop-down box.

You should be able to resize and reposition the Ethernet Packet Template Editor dialog box so
that it is easy to compare the default values to those in the Tx Panel (Figure 61). When you do
so, you'll notice that all of the values in our message are the same as those in the template.
This is a good example of how these default values save time!

Version 1.0 - August 3, 2015 70 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

| E= 22 ARP Request.us3 - Vehicle Sp

File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Teols Help

ENEIRE)

Description EtherType |‘J'LAN
N N

inQ ARP Request ARP Mone

| Protocol Source | Port
N N o

00:FC:70:00:00:01

|Desh’naﬁnn |Pﬂrt |Tx Msg |Co\or
o N o N
FF:FF:FF:FF:FF:FF None

s

— R——
M 30 cnermet Pacseet Tempiate oy s e
=

=
E
Des

eg| |Packet Field Value

[AHF‘ Packet Template v] [Rstnre Default] [OK] [Cancel] |

| value

- Offline @ P\atfurm:[(None) '] [Desktopl 3, Data |'|
ova Messages EdllDf@l@: Messages @l:— Function Blocks @‘ i»
BT -cieccie | B tensmt | O patebese JJ Ethernet H+-ls2elolt e FH|

=EEE

| Raw Value

Destination MAC Address

1

FFiFFFFFF R FF
Source MAC Address 00:FC:70:00:00:01
EtherType or Length ARP 1 ARP
Hardware Type Ethernet 1 Ethernet
Protocol Type IPva 1 IPv4

ARF

Hardware Address Length & 1

Protocol Address Length 4 1

Operation Reguest 1 Reguest
Sender Hardware Address 00:FC:70:00:00:01
Sender Protocol Address 10.0.0.1
Target Hardware Address 00:00:00:00:00:00
Target Protocol Address 10.0.0.2

1 10.0.0.1

1 10.0.0.2

FF:FF:FF:FF:FFiFF - 281474976710655 || *
1 00:FC:70:00:00:01

1 00:FC:70:00:00:01

1 00:00:00:00:00:00

1084210806785
2054

1|

2043

&

4|l «

1
1084210806785
167772161

o
167772162

4 LU 0
“» s (edit) s (edit) s (edit) s (edit) s (adit) s (edit)

Mo Bus Errors

Figure 61: Comparing Ethernet Packet Template Editor Defaults to Current Tx Panel Signal Values. Bringing up the
Ethernet Packet Template Editor allows us to easily compare its default values to the current values in the setup file, so we can
see what, if anything has been changed (in this case, nothing).

We’re done now, so let’s reset the VSpy user interface to where it was before we began this
slight diversion.

» Close Ethernet Packet Template Editor: Click to close the dialog box without
any changes.

» Dock the Tx Panel at the Top of the Screen: Click and drag the Tx Panel window
header until the blue rectangle appears. Keep dragging until the mouse is over the row
of window view tabs, the |& T:Panel| tab reappears, and the blue rectangle fills the VSpy
window. Release the mouse button.

And just like that, the Tx Panel is restored to its original position.

Part 2.2C Download ARP Request CoreMini to Node A and Clear Old CoreMini from
Node B

CoreMinis are stored in flash memory so that they persist even if the EEVB is powered off.
However, this also means that whenever you start a new lab with your board, there is the
possibility that an old CoreMini may still be running from a previous experiment. For this
reason, it is a good practice when starting new work with the Ethernet EVB to clear the

Version 1.0 - August 3, 2015 71 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

CoreMini from any nodes where you do not plan to download a new setup. This will help avoid
unexpected behavior on the network.

» Download CoreMini to Node A: Enter the CoreMini Console and send the current
CoreMini to Node A of your EEVB.

» Clear CoreMini from Node B: Select Node B for your EEVB from the drop-down box.
Then press the | = | button.

Part 2.2D Go Online and Observe ARP Requests

Now let’s go online and see the ARP Request messages coming from the EEVB. Since we
used our normal Ethernet connection in Lab 2.1, we'll first need to select the board in the
Ethernet Interfaces list.

» Select EEVB Ethernet Interface: Go to the Logon Screen and click the radio button for
the EEVB in the Ethernet Interfaces list.

» Switch to Messages View: Select Messages from the Spy Networks menu.
» Filter for ARP Messages: Enter ARP in the EtherType filter field.
» Go Online.

You will now see the ARP Request message, with a new copy arriving approximately every
three seconds, right on schedule.

» Expand ARP Request Message Fields: Click the [#| button next to the ARP Request
message.

The fields will all contain the same values we saw in the Tx Panel.

= ovo e 3.001780¢ ARF Request Intrepid_00:00:01 Broadcast ARP
EI Destination MAC Address = Broadcast [FFFFFFFFFFFF]
7 Source MAC Address = Intrepid_00:00:01 [FC70000001]
A, EtherType or Length = ARP [306]
2%, Hardware Type = Ethernet [1]
2% Protocol Type = Ipv4 [800]
A%, Hardware Address Length = & [4]
%, Protocol Address Length = 4 [4
m_ Operation = Request [1]
7% Sender Hardware Address = Intrepid_00:00:01 [FC70000001]
A% Sender Protocol Address = 10.0.0.1 [A0D00D1]
7%, TargetHardware Address = 0 [0
7% Target Protocol Address = 10.0.0.2 [A000002]

Figure 62: ARP Request Signals in Messages View.

» Go Offline.

Version 1.0 - August 3, 2015 72 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.3 Using Application Signals to Set up an Intelligent ARP Request/
Reply Exchange

In Lab 2.2 we told Node A of the EEVB to transmit an ARP Request message every three
seconds. Naturally, there was no response to any of these messages, because we never
programmed anything to reply to them. We’'ll now rectify that situation by setting up Node B to
respond to ARP Request messages from Node A with ARP Reply messages. We'll introduce
the use of Vehicle Spy 3 application signals, one of which we’ll use to ensure that replies

are only sent when they should be. And we’ll also learn a bit more about how Vehicle Spy 3
matches and decodes messages.

Part 23A Load and Examine ARP Reply Setup File
We’'ll again start with a pre-made setup file for efficiency.

» Load the ARP Reply Setup: From the Logon Screen, select 2.3 ARP Reply from
the | My setups| tab.

As we usually do, let’s start by looking at the messages defined in this setup, starting with the
receive side. The setup file should have been saved with the Messages Editor as the default

view, so you should already be where you need to be. If not, well, you know how to get there

on your own at this point!

In the Messages Editor (receive side) you will see the ARP Request message defined, since
this is the message that we are looking for in order to trigger our response (Figure 63). The
Source field for the message is set to XX:XXXXEXX:XX:XX, which means “any” to Vehicle

Spy 3—it tells VSpy to consider an ARP Request coming from any device to be a match. The
Destination field is FF:FF:FF:FF:FF:FF, because ARP Requests are always broadcast.

Key Description EtherType |VLAN Protocol Source Port Destination Port Tx Msg Color
o o o o o o o o o o
ARP Reguest ARP Mone RS e FF:FF:FF:FF:FF:FF Mone

Figure 63: ARP Request Message Summary for ARP Reply Setup.

» Switch to the Transmit Side.

On the transmit side we have our ARP Reply message. The Source field has been set to
00:FC:70:00:00:02, the MAC address we will typically use for EEVB Node B in the Lab Manual.
The Destination field is zero because we don’t know where the ARP Reply will be sent until an
ARP Request is received. Let’s look at the rest of the values in this message.

Key Description EtherType |VLAM Protocol Source Port Destination Port Len |Raw Payload Bytes
e e e e e e N e e e

ARP Reply ARP Mone 00:FC:70:00:00:02 00:00:00:00:00:00

Figure 64: ARP Reply Message Summary for ARP Reply Setup.

Version 1.0 - August 3, 2015 73 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Switch to the Tx Panel.
» Click the ARP Reply Message.

The field values here should be familiar. Note that the Operation field is here set to Reply,
the Sender and Source addresses are the default values for Node B, and the Target and
Destination addresses are zero since they are not known ahead of time.

» Switch to Function Blocks.

There is a single function block script here (Figure 65) and you’ll notice immediately that it is
quite a bit more complex than the one we sent to Node A. The reason is that we only want ARP
Reply messages sent under the correct conditions. First, we want to generate one only when
an ARP Request is received—other ARP Reply messages should be ignored. Second, we
should only respond when the request contains our IP address, meaning we were the intended
recipient of the request.

Step

[,

7

8
9
10

-

Note: Since we wrote the program that sends the ARP Request

Furthermore, there are only two Ethernet nodes on the small EEVB
network. However, the point here is to simulate correct operation of
ARP, and so we have put in the logic that a real device would need
when implementing this protocol.

messages, we already know they will always be sent to us.

Description

% Wait Untl

Set value

(3t
F rf

Set Value
Set Value

Set Value

& Transmit

2 EndIf
(2 EndIf

Value Comment

JARP Reguest (Present) :in0-0} /f Trigger function block script when a message is received matching our ARP Request definition.

{ARP Reguest (Present) :in0-0} =0 ff Clear Present flag to avoid duplication.

{Operation (Value) :ind-sig7-0} = 1 }{ Chedk the Operation field in the ARP message; only proceed if this is an ARP Reguest.

{Target Protocol Address (Value) :in0-sig11-0} = // Compare the Target Protocol Address in the ARF Request to our own IP address so we only generate
My IF Address :sigl-index(0)} an ARF Reply if the original message was intended for us.

{Target Hardware Address (Value) :out0-sig1d-0} /f Set the Target Hardware Address in the ARP Reply to be equal to the Source MAC Address in the ARP
= {Source MAC Address (Value) :ind-sig1-0} Regquest (which is our MAC address since we received that request).

{{;:rn%itr I;rroobbajccooll iﬁ{sﬁi (E'{.'iﬁ?) ?#igg_lol}-ﬂ} = /f Set the Target Protocol Address in the ARP Reply to the Sender Protocol Address of the ARP Reguest.

{Destination MAC Address (Value) :outd-sig0-0} = /f Set the Destination MAC Address in the Ethernet header to be the MAC address of the device that sent
{Source MAC Address (Value) :in0-sig1-0} the ARP Request.

ARP Reply /f Send the completed ARP Reply.

Figure 65: ARP Reply Function Block Steps.

The script begins by waiting for an ARP Request message to be received and recognized

by Vehicle Spy 3, and ensuring that such a message is only seen once (Steps 7 and 2). It
then checks the Operation field within the ARP header to ensure that it is a request and not

a reply (Step 3). This is necessary because VSpy will match the ARP Request based only on
the Ethernet field values: Source MAC Address, Destination MAC Address and EtherType.
Since we want to trigger based on an ARP header field, not an Ethernet header field, we must

program this explicitly.

Version 1.0 - August 3, 2015 74 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

If an ARP Request is received, we then check the Target Protocol Address field, which
contains the IP address that the ARP Request is attempting to resolve (Step 4). If it matches
our IP address, then this is a request for which we need to send a reply. We fill in the Target
Hardware Address and Target Protocol Address using the Source Hardware Address and
Source Protocol Address values from the ARP Request (Steps 5 and 6). We also set the
Destination MAC Address to the Source MAC Address of the message we received so we
respond back to the originator of the request (Step 7). Finally, we send the ARP Reply (Step 8).

But wait: how do we even know what “our IP address” is? Essentially, we decide ahead of time
what value we want to use for our IP address and ensure that it matches the value that the
ARP Request message is trying to resolve. Then we put it in a special variable that we can
use in our function block script. These variables are called application signals, and are defined
using the feature of the same name within Vehicle Spy 3.

» Switch to Application Signals: Click the | ppication Sinais| tab, or select “«" Application Signals
from the Scripting and Automation menu.

In this (still pretty simple) example we have only one application signal defined, which is the IP
address we used for the check in Step 4 of the function block script (Figure 66).

* = | * | | = d Description
Filter My IP Address
Signal Type [Analog -] Format -
Units Min |0.0000000 Max [0.0000000
[7] The Application Signal is an array 8
Value Type

@ This value is used as a general purpose variable

Initial Value 10.0.0.2

) Decimal) Hex () Binary @ IP () MAC
_ This value is calculated on an interval

0.01 Setup

_ This value is a timer

Up Timer millisecond

[Enable Text API Save And Restore Panels...] [Handlers...

[] Persistent Signal - Will be saved to SD Card when used in CoreMini.

["] Never optimize signal out even if unused

Figure 66: Application Signal Defining IP Address of ARP Reply Node. Vehicle Spy 3’s application signals are variables
that can be used in function block scripts. In this setup we use an application signal to define the IP address of the node so we
can compare it to the target address in incoming ARP Request messages.

Part 2.3B Download ARP Reply CoreMini to Node B and Go Online to See ARP
Request/Reply Exchanges

We’'re now ready to set up Node B of the EEVB to send ARP Reply messages when it receives
ARP Request messages from Node A.

» Download CoreMini to Node B: Select Node B in the CoreMini Console and send to it.

Version 1.0 - August 3, 2015 75 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Switch to Messages View: Click the tab.

» Filter for ARP Messages: Enter ARP in the EtherType filter field.

» Go Online.

» Turn on Scroll Mode: Press [& saoll_| to enable scroll mode if it is currently off.

You should now see matched pairs of messages, with an ARP Request being received every
three seconds followed a few milliseconds later by... wait, shouldn’t those be labeled as ARP
Reply messages?

Part 2.3C Figure Out Why the ARP Reply Messages are Not Decoding Properly

Our program script is working correctly, and Node B is indeed responding to Node A's ARP
Request messages with ARP Reply messages. But Vehicle Spy 3 isn’t showing them correctly
in Messages View. Why? Well, remember back in Lab 1.3 that we defined a transmit message
but also copied it to the receive side? We never did that here. We defined the ARP Request
message on the receive side because it was the message we are receiving, and the ARP
Reply on the transmit side since it's what we are transmitting. But we never put a copy of the
ARP Reply on the receive side. So let’s do that now.

» Go Offline: Always a good idea when making changes.
» Switch to the Messages Editor, Transmit Side.

» Copy ARP Reply Message to Receive Side: Click AR.P Reply, then right-click it,
select Copy To and then Recemve.

» Switch to Messages View.
» Go Online.

And... it still doesn’t work. Can you figure out why? Here’s a hint: take a look at the values in
the Source and Destination columns on the receive side for this message, and think about
what those values mean.

Still stumped? Our original definition of the ARP Reply message (on the transmit side) had
zero for the Destination MAC Address field. We did this because until an ARP Request arrives,
we don’t know where the ARP Reply will be transmitted; the field is filled in with the correct
value by the function block script. But on the receive side these values are used for message
matching. Vehicle Spy 3 therefore will only recognize an ARP Reply message if the Destination
MAC Address field is all zeroes. Of course this never will happen (because we replace that
zero value with a real address) so the messages are never decoded.

The fix is simple: change the field value from zero to “any”.
» Go Offline.
» Switch to the Messages Editor.

Version 1.0 - August 3, 2015 76 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Change Receive ARP Reply Destination MAC Address to “Any”: Change the
receive-side ARP Reply message’s Destination MAC Address from 00:00:00:00:00:00 to
XX XXXXEXXXX:XX. (You can just type “X” a bunch of times to make this faster; VSpy
will fill in the colons.)

» Go Online.

» Switch to Messages View.

There we go. Now Vehicle Spy 3 will decode all ARP Reply messages, and as you should be
able to see, the request/reply exchange between the nodes is working correctly (Figure 67).

2.3 ARP Reply.vs3 - Vehicle Spy

o

File 5Setup Spy Metworks

Measurement Embedded Tools Scripting and Automation Run Tools Help

iy ’-’% [Desktop 1

ava Messages Editor [£2 | @ Messages @l@ T Panel |E\|°:.‘.‘ Application Signal: |§|I = Function Blocks \E”

3, pata |~
i

["sriter] [=woaAdd | [& saol] [Tpetails] [Expand @ (&7 Time Abs|[M Fause] save | [X Erase] Find: @ s
& x ‘Line ‘Tlme |Tx ‘Er |Dasu'iption |Saurca ‘Src Port|DEstinahon |Dst Part|Eﬂ1erType|Protoco\‘VLAN Len
m— e || | | T
oha 1 ARP Reguest Intrepid_00:00:01 Broadcast ARP &0
Custom 1 a2 17Mms ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &
Custom 2 wa 3 2.399993s ARP Request Intrepid_D0:00:01 Broadcast ARP &0
Custom 3 ea 4 1.797ms ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP 80
Custom 4 oha 5 2.999977 s ARP Reguest Intrepid_00:00:01 Broadcast ARP &0
Custom 5 oha] 1.811ms ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &0
Custom & oha 7 2.999932 s ARP Reguest Intrepid_00:00:01 Broadcast ARP &0
& & Data Types oha 8 1,808 ms ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &0 *
oha g 2.999981s ARP Reguest Intrepid_00:00:01 Broadcast ARP &0
Network o 10 182ims ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &
3 Transmit
(@) Errors "
Changing —[[i
Noveth
Completed Msg Message on Ethernet fro| Name value “|FF FF FF FF FF FF 00 FC '
3 s Netoris =) Ethernet, Src: Intrepid U . pogtingtion MAC Address Broadcast 70 00 00 01 08 06 00 01 Pu......
neatl Address Resolution Protc| | oo MAC Address Intrepid_D0:00:01 | |08 00 06 04 00 01 08 FC
Ethernet EtherType or Length ARP Ell(70 00 00 01 OA 00 00 01 Perveesns
Hardware Type Ethernet 00 00 00 00 00 00 OA 00 ...uvvaw
Protocol Type IPvd 00 02 00 00 00 00 OO0 00
Hardware Address Length 6 ~ ||oo 00 oo 00 00 00 00 0O
Protocol Address Length 4 00 00 00 00
S Operation Request
4 [l B ndar Harduzre addr Tntranid 00000t
Details |Reversing|
] | 00 RE 10 JR 1A | Columns[Ethernet v|[Setup ... I Reviews Buffer... :
[~] = (=dit) + [adit]) + (adit) * (adit) * (adit]) * (adit) Mo Bus Errors

Figure 67: EEVB ARP Request / ARP Reply Exchange. With the message definitions fixed in the Messages Editor, Vehicle
Spy 3 now correctly shows the ARP Request messages coming from Node A every three seconds and the ARP Reply
messages sent in response to each by Node B.

Let’'s save our changes so that if we want to look at the exchange again, our messages will

decode properly.

» Go Offline.

» Save the Setup File: Save the setup file as 2.3 ARP Reply Decoded.

Version 1.0 - August 3, 2015

77

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.4 Controlling ARP Request and Reply Operation Using EEVB Inputs

In the final lab of Section 1, Lab 1.6, we saw for the first time in this Lab Manual how to use

a pushbutton input on the EEVB to influence the behavior of a CoreMini running on one of its
nodes. We’ll now build upon that experience by changing our basic ARP exchange simulation
so that both ARP Request and ARP Reply messages are controlled using EEVB inputs. More
specifically, Node A will be modified so the rate at which it sends requests depends on the
setting of the node’s potentiometer input, while Node B will only send a single response when
its pushbutton is held down.

Part 24A Load and Modify ARP Request Setup File

Naturally, we’ll begin with the ARP Request side of the equation. First, we load the original
setup that we used in Lab 2.2.

> Load 2.2 ARP Request: It should be on the |Rrecent| tab since we just used it; if not, find it

in | My Setups |,

Making the ARP Request sending rate vary with the EEVB potentiometer turns out to be
surprisingly simple. The potentiometer is seen as an analog input by Vehicle Spy 3, producing
an integer value ranging from 0 to 4,095. The Wait For step in our function block script has a
wait time measured in milliseconds, so we simply replace the static 3000 value that is there
now with the value from this input.

» Switch to Function Blocks.

» Change Wait For Value: Double-click = 3000 ms in Step 2, then press the = key. When
the Expression Editor appears, delete the 3000 from the Expression box, leaving the
cursor there. Click f@Physical IO on the left-hand menu, click the [+] button next to
Analog Inputs, then double-click Analog Input 1. The value {Analog Input 1 (Value)
:neo0-ai0-0-index(0)} appears in the Expression box. Press Enter or click <.

» Change Wait For Comment: Change the comment to Wait a number of milliseconds
determined by the potentiometer position before sending again..

That’s it! Pretty simple, huh?
Let's save this so it's there if we need it later.

» Save the Setup File: Save the current setup as 2.4 ARP Request Potentiometer.

Part 24B Download and Test ARP Request Setup File Changes

Okay, let’s put this new setup file to work. For starters we’ll just do Node A, clearing from Node
B the CoreMini left over from any previous steps.

» Send CoreMini to Node A.
» Clear CoreMini from Node B.

Version 1.0 - August 3, 2015 78 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Now, let’s set the potentiometer to maximum as a starting point for our test.

» Set Node A Potentiometer to Maximum: The potentiometer for Node A is the round
black dial just left of the very center of the board. Gently turn it clockwise until it stops.

We’'ll now reload the setup from Lab 2.3, after our decoding modifications. This file has the
definition of the ARP Reply message, without which that message won’t be properly interpreted
by Vehicle Spy 3. Besides, we're going to need it for the next part anyway.

» Load the ARP Reply Setup File: Select 2.3 ARP Reply Decoded from the | Recent
tab on the Logon Screen. Discard changes if prompted.

» Filter for ARP Messages in Messages View: Enter ARP in the EtherType filter field.
» Go Online.
» Turn on Scroll Mode (If Necessary).

You should now see ARP Request messages just as you did in Lab 2.2. However, the time
between messages should now be a little over four seconds, instead of three seconds as it
was before. This corresponds to the approximate maximum potentiometer value of 4,095.

» Change Potentiometer Setting to Minimum: Slowly turn the potentiometer counter-
clockwise until it stops.

As you change the potentiometer setting, observe the impact on the ARP Request send rate
(Figure 68). With the dial all the way to the left, messages will be coming at a pretty fast rate.
Note, however, that there is a minimum of roughly 5 to 10 milliseconds between messages,
which is largely due to the time required to generate them.

» Go Offline.

Line |Time Tx |Er |Description Source Src Port | Destination Dst Port|EtherType
Filter ARP i
o 1 ARP Request Intrepid_00:00:01 Broadcast ARP
o 2 40966983 ARP Request Intrepid_00:00:01 Broadcast ARF
o 3 4096706 s ARP Reguest Intrepid_00:00:01 Broadcast ARP
o 4 40956923 ARP Request Intrepid_00:00:01 Broadcast ARF
o 5 4096722 s ARP Reguest Intrepid_00:00:01 Broadcast ARP
oy [4.092715s ARP Request Intrepid_00:00:01 Broadcast ARP
o 7 3.420752s ARP Reguest Intrepid_00:00:01 Broadcast ARP
oy 8 2.483821s ARP Request Intrepid_00:00:01 Broadcast ARP
ot 9 1.887863 ¢ ARP Reguest Intrepid_00:00:01 Broadcast ARP
o' 10 1.299912s ARP Request Intrepid_00:00:01 Broadcast ARP
o 11 955.915ms ARP Request Intrepid_00:00:01 Broadcast ARP
o'y 12 648.969ms ARP Request Intrepid_00:00:01 Broadcast ARP
o 13 382.973ms ARP Request Intrepid_00:00:01 Broadcast ARP
o'y 14 375.184ms ARP Request Intrepid_00:00:01 Broadcast ARP
o 15 285.755ms ARP Request Intrepid_00:00:01 Broadcast ARF
o'y 15 183.989ms ARP Request Intrepid_00:00:01 Broadcast ARP
o 17 124.993ms ARP Request Intrepid_00:00:01 Broadcast ARF
o 18 104.969 ms ARP Request Intrepid_00:00:01 Broadcast ARP
o 19 100,019 ms ARP Request Intrepid_00:00:01 Broadcast ARF

Figure 68: Variable Delay Between ARP Request Transmissions. With the potentiometer at its farthest clockwise position,
the ARP Request messages are sent by Node A about every 4.095 seconds, corresponding to its sampled value of 4,095. As
the potentiometer is turned counter-clockwise, the value decreases, as does the time between transmissions.

Version 1.0 - August 3, 2015 79 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 24C Modify ARP Reply Setup File to Trigger on Pushbutton Input

Now we’ll work on the other half of the equation, the ARP Reply setup, which we already
loaded in the previous step. Making these messages be sent only when a pushbutton is held
down is similar to what we did in Lab 1.6. However, this time instead of having the script run
continuously as long as the button is depressed, we will design it so only one reply is sent each
time the button is pushed. This requires a bit more smarts in our program, and so this part will
involve more extensive “renovations” than we performed on the ARP Request setup file.

We’re going to do this in two steps. First we’ll add a condition to the script so it runs only when
the pushbutton is currently down. Then we’ll add some logic to avoid having the script be
triggered more than once for any pushbutton press.

» Switch to Function Blocks.

» Enlarge Script Window Pane: You'll want to move the horizontal divider up so you
have more room to edit the script steps.

» Add If Statement: Click Step 5 of the function block, then press | # eefore | Select If
under the Description field.

» Enter If Statement Condition: Double-click on the Yalue field, and in the Expression
Editor select [E@Physical I0 from the menu on the left side, scroll down to find the

awitches section and expand it using the [+] button, then double-click Switch 1. Press
[o |,

» Enter If Statement Comment: Add this comment to the command: Only send ARP
Reply if pushbutton is currently down..

» Add End If Statement: Click Step 10, then click | # s=fore | Select End If in the
Description field.

The ARP Reply message will now be sent only when the pushbutton is held down. However,

it will send the messages continuously, rather than only one per button press. To accomplish
what we want, we must keep track of whether or not we’ve already sent an ARP Reply for each
pressing of the button. We need a variable to hold this transmission status, so we will create an
application signal for this purpose. We will use a digital signal, which is the term Vehicle Spy 3
uses for a variable that holds a single binary value.

» Go to Application Signals: Click the |« &ppicstion Siansis| tab.

» Add Application Signal: Press 5 to add a new application signal, which by default is
called App Signal 2. On the right-hand pane, change that name to ARP Reply Sent. The
name will change in the left pane as you type it in.

» Change Signal Type: Click the drop-down box next to Signal Type and select
Digital.

» Set Initial Value: Tick the checkbox next to Initial Yalue and confirm that 0 is in the
adjacent box, or enter it if need be.

Version 1.0 - August 3, 2015 80 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

The application signal ARP Reply Sent is now ready for use (Figure 69). We will only send the
ARP Reply when the pushbutton is held down and ARP Reply Sent is 0. When we do transmit
it, we will set ARP Reply Sent to 1 so the next time, it won’t be sent again.

+ = B2 =
| b B | | = = Description
Filter ARP Reply Sent
My IP Address (sig0 Signal Type [Digital ~| Format -
ARP Reply Sent (sigl
[7] The Application Signal is an array 8
Value Type

@ This value is used as a general purpose variable

Initial Value o}

N) _ Decimal Hex @ Binary (IP MAC
() This value is calculated on an interval
0.01 Setup
This value is a timer
Up Timer millisecond
[T Enable Text AFI Save And Restore Panels...] [Handlers...

[] Persistent Signal - Will be saved to SD Card when used in CoreMini.

["] Mever optimize signal out even if unused

i3 * [edit) * [e=dit) *+ [edit) * [edit) * [edit) * [edit) Mo Bus Errors

Figure 69: ARP Reply Sent Application Signal.

Let’s return to our script and make the remaining changes.
» Switch to Function Blocks.
» Add If Statement: Click Step 6, then press and choose an If statement.

» Enter If Statement Condition: Double-click the Value field for this statement, then in
the Expression Editor select “<*App Signals and double-click AR.P Reply Sent. Vehicle
Spy 3 will put {ARP Reply Sent :sigl-index(0)} in the Expression field; edit the field,
adding =0 to the end, and then click [__o<_].

» Enter If Statement Comment: Add this comment for the step: Only trigger sending an
ARP Reply message if we have not already sent one for this button press..

» Add End If Statement: Insert the End If statement to match the new If statement
just above the current Step 11. (You should be able to do this without having each click
spelled out at this point—give it a shot.)

Finally, we need to add statements to set our variable to the correct values at the right times.
We want to set it to 1 whenever we transmit an ARP Reply, to ensure that we only trigger once.
We also must set it back to 0 whenever we find that the pushbutton is currently not held down,
so the next button press is seen. For the latter part of this we’ll need an Else statement for the
If statement that tests the pushbutton’s status.

First, the command to set the variable to 1 on a transmit.

Version 1.0 - August 3, 2015 81 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Add Set Value Statement: Add a new function block step before Step 7. Select a
et Value command.

» Enter Set Value Expression: Double-click ¥alug, then in the Expression Editor select
. App Signals (if necessary) and double-click ARF F.eply Sent, just as you did earlier.
This time Vehicle Spy 3 will put {ARP Reply Sent :sigl-index(0)} in the field called
Value To Set. Click in the Expression box, enter the value 1, and click [__o<_].

» Enter Set Value Comment: Enter this comment: Since pushbutton is down, set ARP
Reply Sent to 1 so we don’t trigger again until the button is released..

And now we’ll add the two statements we need to reset the variable to 0 when the button is
released.

» Add Else Statement: Add an Els2 command before the current Step 13. After adding
this line, you should see one End If above it and three below.

» Duplicate Set Value Statement: Highlight the Set Value command you created just
above, which should now be Step 7. Click the 2 button to copy it, then click Step 14
and press B to insert a copy of the step below the Els& command.

» Modify Set Value Statement: Double-click the Value field and in the Expression Editor
change the 1 in the Expression box to 0. Change the comment to: Pushbutton is

currently up, so clear ARP Reply Sent to 0 to prepare for next button push..

And that should do it! The final script should look something like Figure 70. I'm sure you'd
rather not do that again, so let’s save our changes in a new file.

15
16
17

» Save Setup File: Save the setup as 2.4 ARP Reply Pushbutton.

Description Value Comment
E Wait Until {ARP Reguest (Present) :in0-0} // Trigger function block script when a message is received matching our ARP Request definition.
Set Value JARP Reguest (Present) :in0-0} =0 // Clear Present flag to avoid duplication.
E If {Operation (Value) :in0-sig7-0} = 1 /{ Check the Operation field in the ARP message; only proceed if this is an ARP Regquest.
E I {Target Protocol Address (Value) :in0-sig11-0} = /f Compare the Target Protocol Address in the ARP Reguest to our own IP address so we only
{My IF Address :sigl-index(0)} generate an ARF Reply if the original message was intended for us.
E‘ If {5witch 1 (Value) :neod-swi-0-index(0)} /{ Only send ARP Reply if pushbutton is currently down.
E If {ARP Reply Sent :sig1-index(0)}=0 J/{ Only trigger sending an ARP Reply message if we have not already sent one for this button press.
Set Value TARP Reply Sent :sig1-ndex(0)} = 1 J{ Since pushbutton is down, set ARP Reply Sent to 1 so we don't trigger again until the button is
et val {Target Hardware Address (Value) :outd-sig10-0} // Set the Target Hardware Address in the ARP Reply to be equal to the Source MAC Address in the
et Value = {Source MAC Address (Value) :in0-sig1-0} ARP Request (which is our MAC address since we received that request).

et val {Target Protocol Address (Value) :out-sig11-0} = [/ Set the Target Protocol Address in the ARP Reply to the Sender Protocol Address of the ARP
et Value {5ender Protocol Address (Value) :ind-sig3-0} Request.

et val {Destination MAC Address (Value) :out0-sigd-0} = [/ Set the Destination MAC Address in the Ethernet header to be the MAC address of the device that
et Value {Source MAC Address (Value) :ind-sig1-0} sent the ARP Request.

= Transmit ARF Reply // Send the completed ARF Reply.

= End If

-L Else

Set Value {ARP Reply Sent :sig1-index(0)} =0 /{ Pushbutton is currently up, so dear ARP Reply Sent to 0 to prepare for next button push.

I End If

2 Endif

[2EndIf

Figure 70: Function Block Steps for Pushbutton Control of ARP Reply Server.

Version 1.0 - August 3, 2015 82 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 24D Download and Test ARP Reply Setup File Changes

Let’s send this new script to the EEVB, go online, and see how well we did.
» Download CoreMini to Node B.
» Switch to Messages View.
» Filter for ARP Messages: Enter ARP as an EtherType filter if it is not already there.
» Go Online.

You should now see a stream of ARP Request messages, but no ARP Reply messages yet.
» Press and Hold the Pushbutton on Node B.

A single ARP Reply message should appear.
» Release and then Again Press and Hold Node B Pushbutton.

Vehicle Spy 3 will now display a second ARP Reply message.

Now let’s try something.

» Set Node A Potentiometer to Maximum: Turn the Node A potentiometer clockwise
until it stops.

» Press and then Immediately Release the Node B Pushbutton.

You likely won’t see an ARP Reply message this time. Why? Our function block script triggers
only when an ARP Request is seen by Vehicle Spy 3. With the potentiometer at maximum, one
is only sent about every four seconds, so unless you are lucky with the button, the press will
never register. We could fix this, of course, by making the script even smarter. But you get the
idea, so we'll stop there.

» Go Offline.

Version 1.0 - August 3, 2015 83 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.5 Setting Up an ARP Request/Reply Exchange Between the EEVB
and PC

All of the message examples in the Lab Manual so far have used both of the nodes on the
Ethernet EVB. This makes sense, since of course a primary goal of this document is to
illustrate how Ethernet works using the EEVB board. It's also possible, however, to use the
PC as one of the participants in a request/reply exchange. This is in fact quite easy to do: we
just have one of the scripts run on Vehicle Spy 3 within the PC rather than downloading it to a
node.

In this brief lab we’ll modify the previous experiment by having the PC respond to ARP
Request messages sent by EEVB Node A instead of having this done by Node B.
Part 2.5A Reset EEVB Nodes

In the preceding lab we made some customizations to the CoreMinis running on both EEVB
nodes. We will now reset the nodes so they are back to running the “standard” ARP Request /
ARP Reply exchange from back in Lab 2.3.

» Load the Original ARP Request Setup: Load the 2.2 ARP Reqguest setup from the
Recent | tab on the Logon Screen.

Send CoreMini to Node A.
Load the Decoded ARP Reply Setup: Load 2.3 ARP Reply Decoded.
Send CoreMini to Node B.
Switch to Messages View.

Filter for ARP Messages: Enter ARP as an EtherType filter.

vV v v v VvV Yy

Enter Scroll Mode.
» Go Online.

Verify that the operation of the nodes has reverted to what it was in Lab 2.3. Leave Vehicle Spy
3 online as you proceed to the next part of the lab.

Part 2.5B Take Node B Out of the Picture

Assuming you have been following the Lab Manual sequentially—as we recommend—you
now have Node B looking for ARP Request messages and sending ARP Reply messages

in response. We don’t want to have both the EEVB and the PC responding to the same
messages, so we need to stop Node B from reacting to them. One easy way to do this would
simply be to clear the CoreMini from the node, but then if we want to have the node resume
that role we’d have to download it again. There’s an easier way: isolate Node B physically.

Version 1.0 - August 3, 2015 84 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Disconnect the BroadR-Reach Cable: Carefully detach the cable linking the two
EEVB nodes by pressing down the release lock on either connector and then pulling it
out of the jack.

You should now see that the ARP Request messages continue to arrive, while new ARP Reply
messages are no longer received.

As explained in the EEVB User’s Guide, only Node A is connected internally to the USB
interface that runs to the PC; Node B is also not connected to Node A using the board’s
circuitry. The BroadR-Reach cable is the means by which Node B is able to communicate with
Node A and the PC, so detaching it effectively silences that node while still allowing Node A to
function normally.

Part 25C Change ARP Server Setup to Run on PC

Now all we need to do is set up the same functionality we put in Node B on Vehicle Spy 3
running on the PC. To accomplish this, we just change the setup so the function block script
runs on the PC rather than the EEVB.

» Go Offline.
» Switch to Function Blocks.

» Change the Start Type: Click the |start | tab. Then change the current value of
Start Immediately Embedded Only in the drop-down box to Start Immediately.

» Switch to Messages View.
» Go Online.

Now you will see ARP Reply messages generated once again. Notice the '@/ symbol in the
Tx column; this indicates that Vehicle Spy 3 recognizes that it sent the ARP Reply messages,
as opposed to having seen them as they were transmitted by another device on the network
(such as the EEVB).

What if we wanted to do this the other way: have the PC generate ARP Request messages
and then have the EEVB respond? Unfortunately this is not possible using just Vehicle Spy

3 and the EEVB. We can certainly set up the PC and an EEVB node in this manner just by
swapping which setups we run on each. However, the EEVB is designed only to send Ethernet
traffic to the PC over its USB link, not to receive Ethernet traffic from it over that connection.
However, in Lab 2.6 we’ll see that there is a way around this limitation if we add another
hardware device to the mix.

Part 2.5D Adjust Message Definitions for PC-Based Operation

There’s one small issue with the adaptation we have made here, but if you followed the
directions exactly, you may not see it. That’s because it is only visible when Vehicle Spy 3 is in
static mode. Let’s disable scrolling so we can see what changes.

Version 1.0 - August 3, 2015 85 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Enter Static Mode.

You will now see the standard static mode Messages View display, but with one curiosity: two
ARP Reply messages for every ARP Request (Figure 71). We aren’t actually sending twice as
many messages, of course; the script didn’t change just because we turned off scrolling. So
what’s going on?

|Cnunt |'ﬁme |Tx |Er | %i Description |Snurce |Src Pnrt‘ Destination |Dst Pnrt|EH‘|erType|Prnmcnl|\u'LAN |Len
1] [.
3.000115s(3 ARPReply Intrepid_00:00:02 Intrepid_D0:00:01 ARP 42
3.000115 s/ ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP 42
oa 3.001921s ARP Request Intrepid_00:00:01 Broadcast ARP &80

Figure 71: Dual ARP Reply Messages in Static Mode.

Remember how until now we have always copied all transmit messages over to the receive
side so that VSpy would recognize and decode them? This was required because all of the
messages were being sent by the EEVB, which is a device external to the PC. However, the
program already knows about messages that it itself is sending. In scroll mode, Vehicle Spy 3
only displays one line per message it sees on the network, even if multiple messages match

in the Messages Editor. This is why we only saw an ARP Reply once per transmission. In
static mode, however, each message definition that matches receives a separate entry; this is
intentional, to support cases where one message may match multiple definitions depending on
the circumstances. Here we have an identical transmit and receive copy of the same definition,
so we always see it twice.

The solution is pretty simple, of course: remove the extra message definition.
» Go Offline.
» Switch to Messages Editor, Receive Side.

» Delete ARP Reply Message: Click ARP E.eply and then press = to delete the
message.

» Switch to Messages View.

» Go Online.
You will now see only one ARP Reply line and one ARP Message line in both scroll and static
modes.
Part 25E Return Back to EEVB Operation

We’ll now revert our changes and resume operation using only the EEVB. We don’t actually
have to change anything on the EEVB itself, since we didn’t change it to do this lab in the first
place—all we need to do is reconnect the two nodes and load a fresh copy of the original ARP
Reply setup file to erase the changes we made above.

» Go Offline.

Version 1.0 - August 3, 2015 86 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Load the Decoded ARP Reply Setup: Load 2.3 ARP Reply Decoded (and discard
changes when prompted).

» Reconnect the BroadR-Reach Cable: Attach the cable connector that you previously
disconnected.

» Switch to Messages View (If Necessary).
» Filter for ARP Messages: Enter ARP in the EtherType filter field.
» Go Online.
You should now see ARP Request and ARP Reply messages in Vehicle Spy 3, as before.
» Go Offline.

Version 1.0 - August 3, 2015 87 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 2.6 Manual ARP Request from PC to EEVB Using RAD-Moon
(Optional)

In Lab 2.5 we used the PC as one of the participants in an ARP exchange, having it generate
ARP Reply messages in response to ARP Request messages received from an EEVB node.
As mentioned near the end of that lab, though, the EEVB is designed for only one-way
communication—it can send messages to the PC, but not receive them from it. Thus, with only
the EEVB, one could not have the opposite setup, with the PC generating the ARP Request
and the EEVB sending back the ARP Reply.

Enter the RAD-Moon, another member of Intrepid’s full line of Automotive Ethernet tools. The
RAD-Moon is a media converter, a simple device that translates between two physical layer
implementations of the same network type. In this case the device converts between standard
Ethernet (used by computers) and BroadR-Reach (used in automotive applications).

The RAD-Moon receives frames from both its Ethernet and BroadR-Reach connections,
converts them, and then retransmits them on the other link, passing traffic in both directions
simultaneously. This makes the RAD-Moon an essential tool for working with all sorts of AE
applications. In this optional lab we’ll see one such use, enabling a PC to communicate directly
with an Ethernet EVB node. We’'ll set up an ARP exchange where the PC sends ARP Request
messages and the EEVB sends ARP Reply messages back. This is comparable to how one
might use Vehicle Spy 3 and the RAD-Moon to test an Automotive Ethernet ECU.

You will need a PC with a standard wired Ethernet connection for this lab to work properly.
While not mandatory, access to an Ethernet hub or switch will make the hardware setup easier
for this lab.

Note: The RAD-Moon can be obtained bundled with the EEVB
or purchased separately; please contact the sales department

at Intrepid Control Systems for more details. If you don’t have a

RAD-Moon, feel free to skip this lab and continue with Section 3.

Part 2.6A Set Up the Ethernet EVB and RAD-Moon for Bidirectional Communication

Since we are using extra hardware, we’ll need to start by creating a new physical configuration.
This is pretty simple to do, and as usual, we’ll guide you through the process step by step.

As you follow along, you may find it useful to refer to the special hookup diagram for this lab,
which can be found in Figure 72.

Version 1.0 - August 3, 2015 88 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

e ==

ETHERNET

EYE

1°IB-

!

“ B

Figure 72: EEVB / RAD-Moon Hookup Diagram. The basic EEVB setup remains the same as before, except that its BroadR-
Reach cable is detached from Node A and Node B is connected to the RAD-Moon’s Mini50 connector instead. The RAD-Moon
receives power over the connected USB cable from the PC, and is connected to the PC using a standard Ethernet cable. A
USB hub and/or Ethernet switch can be used if necessary.

First, we connect the USB cable that provides power to the RAD-Moon.

» Connect USB Cable: Attach the full-sized USB connector to an open USB port on your
PC, and the other end to the jack on the RAD-Moon box.

Next, we detach the BroadR-Reach cable linking Node A and Node B, and instead link Node B
to the RAD-Moon.

» Disconnect BroadR-Reach Cable from EEVB Node A: Carefully press down the
release lock on the BroadR-Reach cable connector attached to Node A of the EEVB
and pull it from the jack.

» Connect BroadR-Reach Cable to RAD-Moon: Plug the connector you just detached
into the BroadR-Reach jack of the RAD-Moon.

Finally, we connect the RAD-Moon to the PC over standard Ethernet. This can be done directly
into a PC Ethernet port, but this will mean (temporarily) detaching any cable that may already
be using that port. Alternately, you can use a hub or switch, plugging the PC into one of its
ports and the RAD-Moon into another.

» Connect Ethernet Cable: Connect one end of a standard Ethernet cable to the
Ethernet port on the RAD-Moon, and the other end to the PC Ethernet jack or a jack on
a hub or switch to which the PC has already been connected.

Version 1.0 - August 3, 2015 89 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 2.6B Set Up EEVB Node B to Send ARP Reply Messages

For this experiment Node B will be programmed to listen for ARP Request messages sent
by the PC and to respond to them with ARP Reply messages. We have already created the
necessary script, which we first employed in Lab 2.3, and can reuse here.

» Load the Decoded ARP Reply Setup: Load 2.3 ARP Reply Decoded on the Logon
Screen.

» Download CoreMini to Node B.
We aren’t using Node A in this lab, but while we’re here, let’s just ensure that it is inactive.

» Clear CoreMini from Node A.

Part 2.6C Set Up Vehicle Spy 3 to Send ARP Request Messages

Next, we configure Vehicle Spy 3 to enable us to manually transmit ARP Request messages to
the EEVB. We’'ll begin with the same ARP Request setup we used in Lab 2.2, and then make a
couple of necessary modifications.

We’re going to learn a new trick to help us here: working with multiple Vehicle Spy 3 instances.
For clarity, we’ll call the original instance that currently has 2.3 ARP Reply loaded Instance 2.3,
and the new copy of the program Instance 2.2 (for reasons that will soon become obvious).

» Start a New Vehicle Spy 3 Instance: While leaving the current Vehicle Spy 3 window
active, start the program again in the same way as usual. You should now see two
Vehicle Spy 3 entries in the Windows task bar.

» Load the ARP Request Setup: Load 2.2 ARP Request on the Logon Screen of
Instance #2.

Why use two instances? We are going to be sending ARP Requests from Vehicle Spy 3 and
so need that setup loaded into the program. However, we also need a receive message set up
for the ARP Reply messages that come from the EEVB. This is already defined in the 2.3 ARP
Reply setup, so the easiest way to get it is to load both setups in different instances and then
copy the ARP Reply message definition from Instance 2.3 to Instance 2.2.

Let’s give it a shot.
» Switch to Messages Editor in Instance 2.2, Receive Side.

» Copy ARP Request Message: Click on ARF Reguest and then click 52 to copy the
message.

Wait—we’re copying the ARP Reply message to Instance 2.2, so why start in that instance by
copying the ARP Request message definition? Well, we need to do so in order to enable the
paste capability in this instance. It's just one of Vehicle Spy 3’s charming little quirks. :)

» Switch to Messages Editor in Instance 2.3, Receive Side.

Version 1.0 - August 3, 2015 a0 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Copy ARP Reply Message: Click on ARF Reply and then click Bz,
» Switch to Instance 2.2.

» Paste ARP Reply Message: Click 2 to paste the message into the Messages Editor
on Instance 2.2.

We now have the definition we need, so there’s no longer any need for Instance 2.3. There will
also now be no more need to refer to instance numbers, so we’ll drop that as well.

» Close Instance 2.3.

Remember that in Lab 2.5 we discussed that when transmitting from the EEVB we need

each transmit message to also be defined on the receive side, but we don’t need that when
transmitting from within Vehicle Spy 3. Well, the 2.2 ARP Request setup was originally created
for sending from the EEVB. Now that we’re going to send from the PC, we don’t need the ARP
Request definition on the receive side any more.

» Delete ARP Request Message from Receive Side.

Our message definitions are now how we want them, but we aren’t quite done yet. We will
want to use the Tx Panel to manually send ARP Request messages from within Vehicle Spy 3,
while looking at the Messages View to observe the message exchanges. Since we want two
views open, you guessed it, this is a job for the docking feature!

» Dock Tx Panel at Bottom of Screen: Drag the |& 1«Panel| tab until the blue rectangle
appears, continue dragging until the pointer is over the [/ symbol, then release. (If you
need more detailed instructions, please refer back to Part 2.2B.)

» Switch to Messages View: Click the | wessages| tab in the upper half of the window.

» Reduce Size of Docked Tx Panel: Drag the horizontal divider downward so that most
of the screen is the Messages View, but the ARP Reguest message is still visible on the
left side of the Tx Panel.

» Close Details View: Click to disable Details View. (It takes up a lot of
space and we don’t need it right now.)

The result of all of these changes should be a Vehicle Spy 3 window that looks something like
Figure 73.

As usual, let’s save this so we don’t have to do all of that again!

» Save the Setup File: Save the current setup as 2.6 ARP Request from PC.

Version 1.0 - August 3, 2015 91 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

2.2 ARP Request.vs3 - Vehicle Spy u_lﬂj 8
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
m ~| Offfine Platfcrm:[(l\lone) v] (£} Desktop1 3, pata |~
ava Messages Editor | 22 | @ Messages@lg Function Blocks |E|| i
[™ Filter] [oo Add] [&> seroll] [7 petails] [¥] Expand @ Fause Find: |Des
x ‘Cnunt ‘ Time |Tx ‘Er |%l Description ‘Snurce |Src Pnrt|DEsﬁnahnn |D5t Pnrt|EH‘verType|Prnh:\cn\ ‘VLAN Len
e Messoges e | | [[\ [| [] [|
Custom 1
Custom 2
Custom 3
Custom 4
Custom 5
Custom &
(= &3 Data Types A
MNetwork
) Transmit
@) Errors
Changing
Mo Match
Completed Msg
= :—[\; Netwarks Kl
neaVl -
Ethernet s 2
E | oo w37 1R | 2o Columns [Ethernet v|[Setup ... I Review Buffer... ﬁ N
B TxPanel CelEnrEz]
[& Egt Transmt | 3 Dsapeartx | Protocol: [Ethemet - .
Description Tx | Auto Tx Rate EtherType |VLAN Protocel St Description | In DE|59 Step
d Erd Erd b krd brd Destination MAC Address +| - | s
Periodic Hone AP None ol Source MAC Address +1. - | &
EtherType or Length +| - | s
” A_ . - Hardware Type + s o
« m b] il 3
e} * (adit) » (edit) * (adit) * (edit) » (adit) e (adit) No Bus Errors

Figure 73: Messages View with Docked TX Panel. The Messages Editor takes up most of the screen, but with the Tx Panel
occupying the bottom portion so we can access the manual transmit button (highlighted as item A).

Part 26D Manually Transmit ARP Request Messages from Vehicle Spy 3 and Observe
ARP Reply Messages from EEVB

Let’'s now put our setup to work. We’ll use the manual transmit button for the ARP Request
message (Figure 73:A) to send that message, which will go through the RAD-Moon and be
received by Node B of the EEVB. It will then respond with an ARP Reply message that will
travel back through the RAD-Moon and be received and displayed by Vehicle Spy 3.

Since in this experiment we are transmitting over the PC’s regular Ethernet connection and not
the USB link to the EEVB, we must remember to change our Ethernet interface selection. (If
you encounter any issues in this lab, there’s a good chance you forgot to do this!) Also bear in
mind that since you usually want the EEVB selected, that’s the default when VSpy starts up; if
you restart Vehicle Spy 3 you’ll need to manually choose the non-EEVB interface again.

» Change Ethernet Interface Selection: Return to the Logon Screen and select the
Ethernet interface corresponding to the PC’s standard Ethernet port.

Now let’s return to the Messages Editor (with docked Tx Panel) and get some traffic going.

» Switch to Messages View.

Version 1.0 - August 3, 2015 92 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Filter to Show Only ARP Messages: Enter ARP in the EtherType filter field.
» Enable Scroll Mode.
» Go Online.

You will now see displayed in the Messages View... absolutely nothing. The EEVB is waiting for
an ARP Request message and we haven'’t sent any yet.

» Transmit ARP Request Message: Press the transmit button for the ARP Request
message in the Tx Panel.

You should see ARP Request and ARP Reply messages appear. Of course they aren’t sent

at the exact same time, but it takes only a few milliseconds for the request to be recognized
and the reply generated, so they seem almost simultaneous to the human eye. Note that the
ARP Request message has the transmit symbol (i) in the Tx column, indicating a transmitted
message.

» Transmit ARP Request Message Two More Times: Press the transmit button twice
more.

Now you will see three ARP exchanges in Messages View (Figure 74).

2.6 ARP Request from PC.vs3 - Vehicle Spy o S
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
i[9 | (B Desktop1l %, Data |~
@8 Messages Editor | £2 | Messages @E Function Blocks \gw i
L Ssriter] [==aAdd | [Gscrol | [Tloetils | ¥ Expand [8] [&T Time Abs][M Pause | save | [X Erese |[&) Find:|pes
Entai
% X Line |Time Tx |Er |Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAN |Len
i Filter arp
|=) oo Messages "
5 1) ARP Reguest Intrepid_00:00:01 Broadcast ARP 42
Custom 1
cstam ova 2 2.402ms ARP Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &0
Custom 2 E 3 137132 @ ARPRequest Intrepid_00:00:01 Broadcast ARP 2
Custom 3 oa 4 3.050 mg ARF Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &0
Custom 4 E 5 5.286720 s _},J ARP Request Intrepid_00:00:01 Broadcast ARP 42
Custom 5 oa [2.377 ms ARF Reply Intrepid_00:00:02 Intrepid_00:00:01 ARP &0
Custom &
=) £9 Data Types .
Network
@ Transmit
@) Errors
Changing
No Match
Completed Msg
=) ot Netwarks =
neaVl
L[b
Ethernet T
= | TR IUN I Columns lEthernet ~| setup.. | Review Buffer...
]
B, 14 Panel = [EIEE]
[2, Edi Transmil essages | [X DisablealTx | Protocol: [Ethemet O .
Description Tx | Auto Tx Rate EtherType |VLAN Protocol E Description| In DC|SQ Step -
7 ke krd 7 b i Destination MAC Address +| - | s
AP R t] Period N AP N al Source MAC Address +| - | &
eques eriodic one one EtherType or Length] 1=] s
Hardware Type + s =
< 1l s] 1l 3
i s [edit) * (edit) « (edit) s (edit) + (edit) s [edit) No Bus Errors

Figure 74: Messages View and TX Panel Showing ARP Exchange. We pressed the manual transmit button three times to
send three ARP Request messages through the RAD-Moon to the EEVB, which responded with three ARP Reply messages..

Version 1.0 - August 3, 2015 93 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 26E Set Up Vehicle Spy 3 to Regularly Transmit ARP Reply Messages—Two
Ways

Being able to manually transmit messages by pressing the button in the Tx Panel for each

one can be pretty useful. However, there are cases where we may need to keep our attention
elsewhere, such as when diagnosing a problem. Here we are better off just having Vehicle Spy
3 send the ARP Request message periodically, just as we had EEVB Node A doing in earlier
labs.

One way to do this is simply to use a function block script. Fortuitously, we already have

the script we need in the current setup, because it was defined in 2.2 ARP Request so we
could send it to the EEVB. All we need to do is change the startup condition, just as we did in
Lab 2.5.

» Go Offline.
» Switch to Function Blocks.

» Change the Start Type: Click the |strt | tab and change
Start Immediately Embedded Only to Start Immediately.

And now let’s go online and see what happens.
» Switch to Messages View.
» Go Online.

As you might expect, we now have an ARP Request message being sent about every three
seconds, followed immediately by an ARP Reply—just as when the EEVB nodes were talking
to each other.

Now let’s try another method, which uses the Tx Panel in a different way. If you look under
the Auto Tx column for the ARP Request message, you'll see that it is currently set by default
to Periodic, which means that Vehicle Spy 3 will transmit the message regularly at a preset
frequency. However, the entry under the Rate column is None, so automatic transmission is
effectively disabled. Let’s change that.

» Go Offline.

» Change ARP Request Auto Tx Rate to Two Seconds: Double-click the box for the
ARP Request message under R.ate and then click the arrow that appears on the right
side of the box. Scroll down and select 2.000 from the drop-down box menu. Press
Enter.

You will now see 2.000000 in the Rate column.
Let’s disable the function block we were using earlier—we no longer need it.

» Switch to Function Blocks.

Version 1.0 - August 3, 2015 94 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Change the Start Type: Click the |start | tab and change Start Immediately to

Manual Start.

We also don’t need the Tx Panel permanently docked any more, so let’s free up some screen

space.

» Dock the Tx Panel at the Top: Drag the Tx Panel window pane header to the top and

release when the |& T«Panell tab reappears.

And finally, let’s see the results of our efforts.

>
>

Switch to Messages View.

Go Online.

Once again you'll see ARP Request and ARP Reply messages appear regularly, this time
separately by about 2 seconds per pair.

Part 2.6F Restore EEVB-Only Configuration

We’re done with the RAD-Moon, at least for now, so let’'s undo the changes we made and
resume operation using only the EEVB.

>

vV v vYvyy

Go Offline.

Disconnect USB Cable from RAD-Moon.

Disconnect BroadR-Reach Cable from RAD-Moon.
Connect BroadR-Reach Cable to EEVB Node A.
Disconnect Ethernet Cable from RAD-Moon and PC or Hub.

Reconnect Ethernet Cable to PC Ethernet Port: If you disconnected your main
network connection for this lab, be sure to restore it.

Congratulations, you’'ve completed Section 2 of the Intrepid Ethernet EVB Lab Manual!

Version 1.0 - August 3, 2015 95 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Section 3 Simulations Using TCP/IP Internet Protocol (IP) and
Internet Control Message Protocol (ICMP) Messages

In Section 1 of the Lab Manual we dealt with Ethernet messages, which are implemented at
layers 1 and 2 of the OSI Reference Model; in Section 2, we experimented in detail with ARP,
which interfaces between layers 2 and 3. As we move logically up the layer stack, the next
step is layer 3 itself, called both the Network Layer and the Internet Layer. Here we find what
is arguably the most important protocol in all of networking, the Internet Protocol (IP), and its
adjunct, the Internet Control Message Protocol (ICMP).

In this section you’ll learn about these two essential components of TCP/IP and work with them
using the Ethernet EVB and Vehicle Spy 3. You'll achieve these objectives:

e Learn about the Internet Protocol and its two versions, IPv4 and IPv6.

e Capture IP packets and analyze their headers to see how IP works in the “real world”.
e Generate and then analyze different types of ICMP messages.

e Create and transmit IP messages using the EEVB.

e |Implement different functionality on each of the EEVB nodes without needing two
separate setup files.

e Use a Vehicle Spy 3 signal list to more easily see signal values.
e Set up a signal plot to display signal values graphically.

e Run two CoreMini scripts in parallel on the EEVB.

e Make an EEVB simulation of the essential ping utility.

e Set up a request/reply ICMP exchange between the PC and EEVB, optionally including
the RAD-Moon media converter.

e Learn how to use graphical panels to display message information and control the
operation of Vehicle Spy 3.

e Simulate the generation of an ICMP error message.

Once again, we assume here that you have already completed earlier sections of the Lab
Manual. Also, we will omit even more of the detailed, step-by-step instructions for common
tasks, such as switching between views or downloading CoreMinis, since you should be quite
comfortable by now with most of them.

Before beginning, we present a brief summary of IP and ICMP functions and operation for
those who are new to these protocols. As always, a full description is well beyond the scope
of the Lab Manual, but these technologies are covered in great detail in Chapters 15 to 25 of
Automotive Ethernet - The Definitive Guide, included in your Ethernet EVB package.

Version 1.0 - August 3, 2015 96 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

An Overview of the Internet Protocol (IP)

Even though its name comes second, the Internet Protocol is actually the heart of the TCP/IP
protocol suite. Layer 3 of the OSI model is primarily concerned with the delivery of data across
an arbitrary internetwork (or internet) of networked devices, and in TCP/IP the Internet Protocol
is what facilitates this essential function. As the name also suggests, the Internet Protocol is
also the basis of operation of the global Internet.

IP has the following core functions:

e Addressing: IP addresses are familiar to everyone in the world of technology; we’ve
already used them in the Lab Manual. They provide the means for uniquely identifying
devices across an internetwork of potentially billions of devices.

e Data Encapsulation and Message Formatting: Virtually all higher-level protocol
messages are encapsulated within IP messages (also called packets or datagrams).

¢ Routing and Datagram Delivery: IP plays a key role in ensuring the accurate and
efficient routing of data between different network types in diverse geographic locations.

IP is designed to be a relatively simple protocol so that it can operate at a high speed. It is an
independent protocol because it seamlessly carries data from thousands of different higher-
level protocols. It is also called unreliable because it doesn’t guarantee delivery of data,

nor provide acknowledgments when data is received. This was a deliberate design choice,
allowing reliability to be added in higher layers when needed, while allowing more-efficient
basic data transport when it was not required. Finally, IP is said to be universal because nearly
every modern computing device can understand the protocol.

There are two versions of IP, which are known as IPv4 and IPv6 (versions 1, 2, 3 and 5

don’t exist for various reasons). IPv4 is our focus in the Lab Manual, because it is simpler to
understand and still by far the more commonly used of the two. IPv6 was developed to address
IPv4’s shortcomings in areas such as address space size and routing efficiency, but is only
very slowly supplanting its predecessor.

Incidentally, you may notice that despite underscoring the importance of IP, we don’t seem

to have many labs devoted to using it. This is a case where appearances can be deceiving,
though. Only one lab features IP by itself, because that’s not typically how IP is used—as
mentioned above, it's the common data encapsulation of other TCP/IP protocols. All of the labs
in this section that use ICMP also use IP, and the same is true of all the labs in Section 4.

An Overview of the Internet Control Message Protocol (ICMP)

Because IP is used in every transaction in TCP/IP, it was important to keep it as simple and
streamlined as possible. For this reason, many of the administrative tasks required to keep
an internetwork running smoothly were offloaded to a secondary protocol called the Internet
Control Message Protocol, or ICMP. By way of analogy, IP could be thought of as a busy
executive, and ICMP as the skilled assistant that allows that executive to get things done
quickly and efficiently without worrying about small details.

Version 1.0 - August 3, 2015 97 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Because of the special relationship between these two protocols, ICMP occupies a rather
unique place in TCP/IP. ICMP messages are carried within IP packets, much like those of
higher-level protocols such as the Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). However, ICMP is charged with housekeeping tasks that support IP rather
than with data transport. For this reason, ICMP is generally considered to reside at layer 3 of
the OSI model, rather than layer 4 as is the case with TCP and UDP.

ICMP defines a set of messages that can be conveyed between internetworked devices to
communicate administrative data. These are generally broken into two categories:

e Error Messages: These messages provide feedback to a source device of a problem
condition, such as the inability to deliver a message or an invalid value in a message
field (Figure 75).

e Informational Messages: These are used to query and provide information, perform
testing or implement special features.

Internet

Local Network Remote Network

Figure 75: ICMP General Operation. A typical use of ICMP is to provide a feedback mechanism when a problem occurs

with an IP message. In this example, device A is trying to send an IP datagram to device B (thin, light arrow). However, when
it gets to router R3, an issue of some sort is detected that causes the datagram to be dropped. R3 sends an ICMP message
(thick, dark arrow) back to A to tell it that something happened, hopefully with enough information to let A correct the problem if
possible. Note that R3 can only send the ICMP message back to A, not to R2 or R1.

Like a good administrative assistant, ICMP does a lot of work in the background that isn’t
noticed by others. In addition to helping resolve various issues in a network, its informational
messages are used to implement several essential networking tools that are used to test and
manage network configurations. We will use one of these, ping, extensively in this section of
the lab manual.

Just as there are two versions of IP, there are also two versions of ICMP. These are called
ICMPv4 and ICMPV6 to make it easy to match them to their IP counterparts.

Version 1.0 - August 3, 2015 98 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.1 Examining IP and ICMP Messages and Some Common Network
Utilities

As we have done in the last two sections, we’ll ease into our exploration of IP and ICMP
messages by capturing and analyzing some created by actual TCP/IP network devices before
we start creating our own. As part of this process we will also play with a couple of common
network utilities that employ ICMP to implement their functionality, making it easy for us to
observe that protocol in use.

Again, as with earlier “real world” labs, you will need to ensure that the PC running Vehicle Spy
3 is connected to an actual network in order to see the messages. An Internet connection—
either direct or through a router—is particularly well-suited to this lab.

Part 3.1A Go Online and Explore IP Filtering Variations

Since this is a new section of the lab manual, we’ll begin with a new instance of Vehicle Spy 3
to ensure that any settings from previous labs have been cleared.

» Close Vehicle Spy 3.
» Start Vehicle Spy 3.

Now we’ll once again select our regular (non-EEVB) Ethernet interface, so we can look at real-
world traffic. To save time, we’ll also load the custom column setup we made in Lab 1.1 so that
the Messages View is set to show Ethernet traffic.

» Select Active Regular Ethernet Interface.
» Load 1.1 Custom Column Setup.
You will probably be automatically switched to Messages View, but if not, do so manually.

Recall that back in Lab 2.1 we entered a filter in the EtherType column so that we’'d only see
ARP messages and not the others that appear on the network. We needed that because ARP
messages make up only a small percentage of the traffic on a typical TCP/IP network. That’s
definitely not the case with IP, which we can easily prove by not entering a filter and just going
online. Let’s do this in scroll mode so we can see the messages as they arrive.

» Enter Scroll Mode.
» Go Online.

You will now likely see a steady stream of TCP/IP traffic, with nearly all of it having either IPv4
or IPv6 in the EtherType column.

If we do want to make sure we only see IP messages, this is of course simple.
» Set IP EtherType Filter: Enter IP in the EtherType column filter box.

Non-IP messages are now suppressed.

Version 1.0 - August 3, 2015 99 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Of the messages being displayed, the lion’s share will be for IPv4 specifically; to see only
those that are IPv6, we just need a more specific filter.

» Set IPv6 EtherType Filter: Change the EtherType column filter to [Pv6.

The stream of displayed traffic will now slow down dramatically, since most networks don’t use
IPv6 a great deal yet. Of course we can also filter just for IPv4.

» Set IPv4 EtherType Filter: Change the EtherType filter to IPv4.

New IPv6 messages are now hidden and IPv4 messages shown.

Part 3.1B Analyze an IPv4 Message

Much as we did when looking at ARP messages in Part 2.1C, we will now explore the IPv4
message format more deeply, examining the individual header fields in a sample packet.

One difference is that you may recall from our look at ARP that we used a utility to force the
computer to generate ARP messages, since it can take some time for them to appear on their
own. But as you saw above, that’s certainly not an issue with IPv4 messages, many of which
will appear on a typical Internet connection every second!

In fact, there are probably so many messages coming in right now that the VSpy display scrolls
constantly. We only need a sample so we can just go offline for the moment.

» Go Offline.

Next, simply select a sample message you want to use for this analysis; they are all IPv4
because of the filtering we did earlier.

» Select an IPv4 Message: Click on any IPv4 message in the Messages View.

We'll look at individual fields in Details View. You may or may not have this enabled at present,
depending on which parts of Section 2 you completed.

» If Necessary, Enable Details View: If Details View is not currently enabled, click

“Jpetails | to turn it on.

There will probably be four entries in the left pane of the Details View. The first will be Message
on Ethernet, which is the general entry that Vehicle Spy 3 makes to denote an Ethernet
message as opposed to one from a different automotive network. The second will be Ethernet,
containing the details of the Ethernet header; you may recall that we examined these way back
in Part 1.2G when we first learned about the Details View. The third entry is Internet Protocol
Version 4, which is what we want, while the fourth will be for the higher-layer protocol carried in
the IPv4 message, most likely either UDP or TCP.

» Expand the IPv4 Message Header: Click the |+| button to the left of
Internet Protocol Version 4 in the Details View.

You will now see some of the individual fields of the IPv4 message you chose. Since there are
many of them, you most likely will only see a few at first and will need to scroll down to view

Version 1.0 - August 3, 2015 100 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

the ones later on in the header. They will also likely be cut off on the side. It's probably worth

increasing the size of the Details View for this exercise.

Before we do, notice that one of the fields has a I+ button of its own, which is hiding several
subfields. Let’s expand that so we can see everything.

» Expand the IPv4 Flags Field: Click the |+| button to the left of Flags in the Details View

area for the already-selected message.

Now, let’'s make it easier to see what we’re dealing with here.

» Increase Size of Details View: Drag the horizontal bar separating the Details View
from the main Messages View window until all of the IPv4 header fields are visible. Also
drag either or both of the vertical bars to the right, since we don’t need to see the Name/

Value area or the byte fields right now.

Ah, much better (Figure 76).

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ E‘M
File Setup SpyMetworks Measurement Embedded Tools Scripting and Autornation Run Tools Help
M|~ offiine PIatform:’(None) vl (& Desktop1 [, Data
=0 Messages Editor | 22 | & Messages IE”
[M Filter] [ava Add] [- Seroll] [" Details] [¥| Expand E] &T Time Abs| Pause Find:E‘
-y 1 Line |Time Tx |Er | Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAM | Len
R
- Filter IPv4
|= oo Messages
“3‘,‘“ 339 47.889 ms Ethernet 192.168.1., 192,168.1.116 56312 57.182.241.85 o752 IPv4 TCP 54
Custom 1
ustom “’-\r’“ 340 32.000 ms Ethernet 192,168.1., 192,168.1,116 55907 157.55.55.145 40014 IPv4 TCR 54
Custom 2 ¥ 341 44.550ms Ethernet 157.55.56., 157.55.56.145 40014 192,168.1.116 55907 [Pv4 TCP 168
Custom 3 “5‘,'“ 342 157 ps Ethernet 192.168.1., 192,168.1,116 55907 157.55.56.145 40014 IPv4 TCP 96
Custom 4 < [b
Custom 5 5 = =
Details for "Ethernet 157.55.56.145 to 192.168.1.116
Custom & Message on Ethernet : 168 bytes captured EC F4 BB 6E 01 3C 00 90
= £3l Data Types Ethernet, Src: WesteerCD:DZ:Zﬁ (00:90:A9:CD:D2:26), Dest: EC:F4:BB| \z0 cp D2 26 os oo 8 B
Network | II'ItPnl:OIVerSIDn‘I, 5rc: 157.55.56.145, Dest: 192.168.1.116 oolczlo Bl ol oB:sllo s
@) Transmit Internet Header Length: 20 bytes gE B B B B e
@ Errars Differentiated services code point: 0x8 EE EE SC <E DA 63 AF 40
C;n) N Explicit congestion notification: Non ECH-capable transport FO 19 16 97 8E 4C 50 18
anging Total Length: 154 bytes 00 53 B3 22 00 00 26 72 L
Mo Match Icllentlﬁcatlon: 0xD715 (55061) 36 45 OF 6C DR 4F E9 AD 6I.1.N.
Completed Msg & Flags: 0x2 26 20 DF 17 E7 DA 6A 76 &3"
Reserved : False
5+ Networks B Don't fragment : True BD 3& EO A4 3E FA 1F BO .:..>..
neoVT More fragments : False CF 8C 9% 5C 65 97 28 &D el
Fragment offset: 0 BD 7E 03 B6 54 33 9B 43 .~..Z3.(
Ethemnet Time ta live: 54 ES 57 4D EC 44 B6 88 F& .WM.D..|
Protocol: TCP 20 51 €7 C2 FO 16 73 24 .Qg...=
Header checksum: 0xD543 55 5F AC ES 23 C4 AB CB -
Source address:157.55.56.145 7T Th Um mm mm ome A omm mmE A
Destination address:192.168.1.116 85 29 13 45 3D C4 F6 42 .).E=..I
Transmission Control Protocol, Src port: 40014, Dst port: 55907 54 77 OR AR E1 DD 4C 6C Tw....LI _
< m | LN m | »
Details ‘ RE'VE‘FS'”9|
|
= | o ome w3 1A ‘ Columns [Ethernet v|[Setup ...] Review Buffer... -
i + (edit) + (edit) + (adit) + (edit) edit) + (=dit) No Bus Errors

-

(=]

Figure 76: IPv4 Message Headers in Details View. For this exercise we selected an IPv4 message at random from our

Internet connection. We expanded the IPv4 entry, as well as the Flags subsection, to show all the fields in the header. We then
expanded the size of the information window so we could see all of the IPv4 header fields without needing to scroll the window.

Version 1.0 - August 3, 2015 101

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Here’s a short rundown of IPv4 header fields and what values you will typically find in each:

Version: Always 4, since we are looking at IPv4 messages.

Internet Header Length: The length of the IPv4 header, measured in 32-bit words.
In most cases the header is 20 bytes long, so the field will contain the literal value 5;
Vehicle Spy 3 shows the equivalent byte length for convenience.

Differentiated Services Code Point and Explicit Congestion Notification: These
fields are both used as part of advanced, optional features in IP, which we’ll ignore at
present.

Total Length: The overall length of the IP packet. This will normally be equal to 14 less
than the length of the entire message as indicated in the Len column in the Messages
View, as is the case in Figure 76. (Do you know why the length difference is 14? Think
about what carries the IPv4 message, and how many bytes its header requires.)

Identification: Used to tag fragments that are part of the same original message so
they can be reassembled correctly.

Flags: A three-bit field containing two information flags and one reserved bit:

e Don’t Fragment (DF): Set to a 1 to force devices on the network to keep the current
message whole.

e More Fragments (MF): This is O for an unfragmented message. When a message is
fragmented, it is set to 1 in every fragment except the last one to tell the recipient to
look for more fragments before beginning reassembly of the original packet.

Fragment Offset: Indicates which portion of the original datagram a particular fragment
represents; this is used in message reassembly.

Time to Live: The number of hops, or inter-device links, a packet may traverse before
being discarded. This is used to prevent network errors, such as routing loops, from
causing a packet to circulate on an internetwork forever. As we’ll see later in the lab, it
can also be used for certain network analysis functions.

Protocol: The reserved number of the next-higher-layer protocol that the IPv4 message
is carrying. Vehicle Spy 3 decodes this into a protocol name for you, which will match
the Protocol column in the Messages View for the message.

Header Checksum: This is computed by the transmitter of the packet and inserted in
this field. The recipient then repeats the checksum calculation; if there’s a mismatch,
this indicates a transmission error and the packet is discarded.

Source Address and Destination Address: The IP addresses of the transmitter and
intended recipient of the message; these match the Source and Destination columns in
the Messages View.

Version 1.0 - August 3, 2015 102 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Note that, as with ARP, IPv4 messages are often used in request/reply pairs. IP is itself only a
‘common carrier” of messages in TCP/IP; it doesn’t define specific message types such as the
ARP Request and ARP Reply used in ARP. Instead, these are implemented by the higher-layer
protocols that use IP. There will typically be many data exchanges taking place simultaneously
via IP packets, however, which can make matching up requests and replies for analysis more
difficult than was the case with ARP. However, in the next part of the lab we’ll see that we can
isolate some of the IP traffic to more easily see specific transactions.

We'll need more real estate for the main Messages View soon, so let’s trim the Details View
back down to size and collapse the IPv4 message headers.

» Reduce Size of Details View: Move the vertical and horizontal dividers to return the
Details View to approximately its normal dimensions.

» Collapse the IPv4 Message: Click the [=] button next to the IPv4 message to hide the
individual fields.

Part 3.1C Generate and Analyze ICMP Echo Request and Echo Reply Messages Using
Ping

Now that we’ve looked at the overall IPv4 message format, we will shift our attention to its
“helper” protocol, ICMP. To see these messages, we simply add a more specific filter to the
one we used before so that only ICMP messages encapsulated within IPv4 are displayed.
Since we are using version 4 of IP, we'll only to look at ICMPv4 and not ICMPV6.

» Set Protocol Filter to ICMPv4: Enter ICMPv4 as a Protocol column filter.
» Enter Scroll Mode: You probably already are in scroll mode, but if not, enable it.
» Go Online.

In theory, we should now see some ICMP messages appear. In practice, you may find that
none show up at all, even after a full minute.

Why? Remember back in Section 2 that we said ARP messages represent overhead and

so devices on the network try to keep them to a minimum. Well, the same is true of ICMP,
only even more-so. These messages are only usually used to convey errors or to implement
network testing functions. Even though IP is considered “unreliable”, in real-world networks
errors with IP packets are rare, so you won'’t often see ICMP errors.

Fortunately, we can use network utilities to generate ICMP messages for analysis purposes.
The easiest and most common way to do this is with the ping utility. This tool, which is found
in every modern operating system, is named after the same term used in sonar, referring

to generating a sound pulse and then waiting for it to bounce off objects to determine their
distance. In a network, you “ping” another device on the network by sending ICMP Echo
Request messages to it, and waiting for it to respond back with Echo Reply messages. This
enables you to verify that the other device is operating and that you are able to reach it over

Version 1.0 - August 3, 2015 103 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

the network. The ping utility also measures the time it takes for the message exchange,
allowing “distance” to be determined in terms of network latency.

Let’s give it a whirl.

> Open Command Prompt In the Windows Start Menu, enter cmd in the box labeled
Search programs and files. When the program cmd.exe appears, right-click it and
choose Run as E::Imir'i;trst:-r.

» Clear Messages View: Press | X Erase | to clear any ICMP messages that may have
appeared while you were reading.

» Ping Google: In the command prompt, enter ping google.com and press Enter.
» Go Offline.

You should see output showing the results of ping’s attempt to send four Echo Request to
Google’s web site. (The IP address may differ from the one in the figure, as Google has many
of them.) All four Echo Request messages should receive Echo Reply messages back, and the
time required for each response will be indicated (Figure 77).

r ~
E 1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ =B = |
[- online (CoreMini active).. : =8| ||Fa) platform: (uone @) 5[4 || @ Desktopl Data -
o0 Meseages Edior | 22 @ Messages@ 2
[Zeriter | [==Add | [Gseol | [Tlpetails | ¥ exmand |E\ |&T Time Abg| M Pause || save | | X Erase || F| Fmd:‘Des .
7 x Line |T|rr|e ‘Tx |Er |Dascriptun |50urce ‘Src PUrt|DEsﬁnatUn ‘Dst PUFt|Eﬂ‘\EFT\¢'DE‘P[UtUEU||\"L.'\N|LEI‘I
T Filter P4 ICMPv4
= oo Messages
CFye 1 Ethernet 192,168.1.11., 192,168,1.116 74,125.226.67 IPv4 ICMPv4 74
Custom 1
“g‘"‘ 2 19.523 ms Ethernet 74,125,226.6., 74.125,226.67 192,168.1.116 IPv4 ICMPv4 74
Custom 2 e 3 98L1%6ms Ethernet 192.168.1.11.. 192.168.1.116 74.125.226.67 Pv4 ICMPy4 74
Custom 3 e 4 20.806ms Ethernet 74,125, 236.6,. 74,125, 226.67 192.168.1.116 Py ICMPyv4 74
Custom 4 “%“ 5 580.191ms Ethernet 192,168.1.11., 192,168,1.116 74.125.226.67 IPv4 ICMPv4 74
Custom 5 “‘E}" & 20.008 ms Ethernet 74.125.226.6.. 74.125.226.67 192.168.1.116 Pv4 ICMPv4 74
Custom & “ﬁ,"" 7 979.979ms Ethernet 192.168.1.11.. 192.168.1.116 74.125.226.67 Pv4 ICMPv4 74
CFe 8 19,956 ms Ethernet 74,125,226.5.. 74,125,226.67 192,168.1.116 Pvg ICMPv4 74 *
= @ Data Types !
Network
N
3 Transmit 3
BER Acministrator: C\Windows\Systam32\cmd.exe | =B li:h] |
@) Errors
-
Changing . J IC:“Windows\system3d2>ping google.com 3 1
No Match *lPinging google.com [74.125.226.671 with 32 hytes of data: 1
n Reply from 74.125.226.67: bytes=32 time=1%ms TTIL=%
Completed Msg Reply from 74.125.226.67: bytes=32 time=20ms TTL= 56 P
G NReply from 74.125.226 .67 bytes=32 time=20ms TTL=56
—'-B:,Nem'orks m| alsu G sgrerly from ?4.125.226.67: bhytes=32 time=1%ms TTL=56 1
neaVl ERNCUEANPing statistics For 74.125.226.67:
% Internet Packets: Sent = 4. Received = 4, Lost = B (Bx loss>.
Ethernet fpproxinmate round trip times in milli—seconds: -
Minimum = 19ms. Maximum = 28ms,. Average = 19ms
[C:~MWindows \system3d2>
n | |
Details | Rej
fa 7]
* | e e
iz . . N . N .
L A

Figure 77: Pinging Google to Generate ICMP Messages. By default, the ping utility sends four Echo Request messages to
a host, one every second. It reports back how much time elapsed between sending the Echo Request and getting a matching
Echo Reply, or indicates if no response was received.

Version 1.0 - August 3, 2015 104 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

In Vehicle Spy 3 you will see eight messages, corresponding to the four Echo Request /| Echo
Reply exchanges that the ping utility generated. Take a look at the values in the Time column
and you’ll notice that the Echo Request transmissions are separated from each other by about
one second, while the times for the Echo Reply messages closely match the time figures
reported by ping. (Note, however, that the Windows version of ping seems to round down all
values to whole milliseconds).

Let’s take a look at an Echo Request message.

» Select the First ICMP Message: Assuming that scroll mode is on, the first message
should be an Echo Request.

If you look in the Details View, you'll see that Vehicle Spy 3 has decoded the ICMPv4 message
type for you right in the summary line, based on the values of the Type and Code fields, which
are also shown. Let’s see what the header fields look like.

» Expand the Message : Click the [+ button in the Details View to the left of
Internet Control Message Frotocol.

As you can see in Figure 78, there’s not a whole lot here. ICMP is a relatively simple protocol,
and Echo messages among its simplest variants. The Type and Code fields have already been
discussed. The Identifier and Sequence Number fields are made available by the protocol
definition to optionally help devices match Echo Request messages with their corresponding
Echo Reply messages. In the case of this ping implementation, we can see that the Sequence
Number field is used while the Identifier field is not (it's always 1).

Details for "Ethernet 192.168.1.116 to 74.125.226.64"

Message on Ethernet : 74 bytes captured 00 90 RS9 CD D2 26 EC F4 &..
Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: WesternD_CD:D2:26 (00:20:A2:CD:| 52 g 01 3C 08 00 45 00 .n.<..E.
Internet Protocol Version 4, Src: 192.168.1.116, Dest: 74.125.226.64 00 3C 40 AE 00 00 20 01 .<B.....
= Internet Control Message Protocol v4, Type:8, Code:0 - Echo request . ~ ~ .
Type:8, Code:0 - Echo request 00 00 CO RS 01 74 42 7D tJ}
Checksum: 0x4BE3 EZ 40 08 00 4B E3 00 01 .8..K...

Identifier: 1 01 78 &1 &2 63 &4 &5 66 .xabcdef
Sequencelumber: 376 67 68 &9 6L 6B 6C &D 6E ghijklmn
6F 70 71 72 73 74 75 7€ opgrstuv
77 61 62 63 64 65 66 67 wabcdefg

™ , |||g8 83 hi

Figure 78: ICMPv4 Echo Request Details.

Make a note of the value of the Sequence field in the first (Echo Request) message, and
then...

» Select the Second ICMP Message: Click on the second ICMP message, which should
be an Echo Reply.

You will notice that the Sequence field is the same as for the Echo Reply.
» Select the Third ICMP Message.

This will be the second Echo Request; its Sequence Number field number should be one
larger than in the first Echo Request. The ping program will keep incrementing this value to try
to ensure unique message exchanges, even across multiple invocations of the utility.

Version 1.0 - August 3, 2015 105 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Beyond the ICMP header there are 32 bytes of data, which if you look in the byte display
area in Figure 78, you will see are just sequential lower-case letters (though oddly, “xyz” are
omitted). An Echo Request can optionally contain any data here, which the recipient must
‘echo” back in its Echo Reply.

Leave the command prompt open for the next part of the lab.

Part 3.1D Generate ICMP Error Messages Using Traceroute

In our earlier look at IPv4 header fields, we discussed the Time To Live (TTL) field, which is
used to help avoid problems that might cause a packet to bounce around an internetwork
forever. When a packet is first transmitted, the sender chooses a value for this field that can
range from 1 to 255. Each time the packet is handed from one device to the next, the recipient
decrements the value in the Time To Live field. If it ever reaches zero, the packet is considered
to have “expired” and is discarded, and the device sends an ICMP Time Exceeded error
message back to the originating device.

Sometimes it is useful to be able to discover the specific route that a packet will take across an
internet (or The Internet) between individual devices. However, there is no specific mechanism
built into TCP/IP to implement this function. A few years after IPv4 and ICMP were first defined,
a computer scientist devised a clever way of using the IP Time To Live field to determine the
route to a device. The utility that implements this method, called traceroute, uses the following
algorithm:

1. Send Probe with TTL Value of 1: A device sends a packet, usually either UDP or
ICMP, to the host whose route it wishes to trace. It sets the Time To Live value of the
packet to 1. The first router that receives the packet will decrement this value, and since
it will now be 0, will discard the packet and send an ICMP Time Exceeded message
back to the originator. That message will have the router’s IP address, so this will tell the
originator the address of the first hop in the transmission.

2. Send Probe with TTL Value of 2: The device next sends a packet with a TTL value
of 2. This time the first router will decrement the field, yielding a valid value of 1, so
the message will be passed to the next router. This time that router will be the one that
decrements TTL to O, discarding it and sending a Time Exceeded message.

3. Send Probes with TTL Values of 3+: This process continues, with the originator
increasing the Time To Live value by 1 each time until a packet gets all the way to the
host being tested.

The Windows version of traceroute—called tracert because of the historical Microsoft limitation
of 8 characters for filenames—uses ICMP to generate its probes, and of course receives back
ICMP Time Exceeded messages, making it perfect for illustrating ICMP. One slight drawback
is that instead of sending only one probe for each TTL value, it sends three, so there are three
times as many messages to sift through. But that’s not a big deal.

We’'ll now do a traceroute and take a look at the ICMP messages that are exchanged. The
instructions below assume that you still have the command prompt open from the last part of

Version 1.0 - August 3, 2015 106 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

the lab. We also will assume you still have Vehicle Spy 3 running, in scroll mode, and set to
filter only for ICMPv4 messages.

» Clear Messages View.
» Go Online.

» Trace Part of the Route to Google: In the command prompt, enter tracert -d -h 3
google.com and then press the Enter key.

» Go Offline.

You should receive a total of 18 messages, which will be received in 3 groups of 6 with a

few seconds separating each set. The -h 3 parameter tells tracert to stop after the first three
routers are found, since that makes the messages easier to analyze, while -d makes the
process a bit quicker. There are 18 messages because three probes are sent for TTL values of
1, 2 and 3, yielding a total of 9, and each receives an error message in reply (Figure 79).

@ 1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ o | = |
& -/ offiine (28] (@] (F9] pratform: [uone) -|[@] 5] (A | @ pesktop1 y Data ~
=8 Messages Editor | £2 @ Messages (2] i
[Zsriter] [owoadd | [& scroll] [Tl petails] ¥ Exoand [9| &7 Time Abs| | Save | | X Erase || 3P| Find: ‘[2/

w0 x B Line |T|me ‘Tx |Er |Dascripton |Snurce |Src Port|Dasﬁnaﬁon |Dst Port|Eﬂ1erTypa|PmtDcoI |VLAN|L
Filter IPv4 ICMPv4
-l oo Messages ¥
oiga [7.786 ms Ethernet 96.120.64,23...96,120.64.233 192.168.1.116 Pvd ICMPv4 7
Custom 1 7
ustom “‘;'“ 7 993.278 ms Ethernet 192.168.1.11...192.168.1.116 173.194.123.8 IPvd ICMPv4 1
Custom 2 O 8 10.544ms Ethernet 63,85, 142,61...68.85. 142.61 192,168.1.116 Pva ICMPv4 1 .
Custom 3 %9 354ps Ethernet 192.168.1,11.,,192,168. 1,116 173.194.123.3 P4 ICMPv4 1
Custom 4 “‘;'“ 10 8.980 ms Ethernet 63.85.142.61...68.85.142.61 192.168.1.116 IPvd ICMPv4 ¥
Custom § Cye 11 234ps Ethernet 192,168.1,11...192,168. 1,115 173.194.123.8 Pvg ICMPv4 1
Custom & “‘ﬁ;" 12 9.248 ms Ethernet 68,85, 142.61...68.85. 142.61 192.168.1.116 Pvd ICMPv4 Fi
“‘;'“ 13 991.653ms Ethernet 192.168.1.11...192.168.1.116 173.194.123.8 Pv4 ICMPv4 1
= Edl Data Types f
CFye 14 14,809 ms Ethernet 68,87, 147.18...68.87. 147,18 192.168.1.116 Pva ICMPv4 1
Network
"g“ 15 302ps Ethernet 192,168.1,11...192.168. 1,115 173.194.123.8 Pv4d ICMPv4 1 .
2 Transmit ® 46 157iims Ethernet 68.57.147.16. . 68.57. 147,18 521681116 Pua ICMPug b
@ Errors @ya 17| BN Administrator CiWindows\System3Zicmd.exe = | B |
Changing o 13 -
IC:\Windows\system32>tracert —d —h 3 google.com =
No Match E
d J Iracing woute to google.com [173.194.123.81
Completed Msg Ellover a maximum of 3 hops:
=) s Networks = g 8 ms ns 96.120.64.233
ns 68.85.142.61
neat ® Message on ns 68.87.147.18
+ Ethernet, Sri
Ethernet ERn sl race conplete.
= Internet Con [C:xUWindows\system32>
Type:11,
Checksur
Details | Revers
| :
Fe) - a ledit) * ladit] w (edit] wredit) Mo Bus Errors

Figure 79: Using Traceroute to Generate ICMP Echo Request and Time Exceeded Messages. In this example we asked
tracert to attempt to find the IP addresses of the first three hosts between us and Google. This results in the generation of

3 sets of 3 ICMP Echo Request messages, each of which has its IPv4 Time To Live field set to generate an ICMPv4 Time
Exceeded message, resulting in a total of 18.

» Select ICMP Message #1.

Version 1.0 - August 3, 2015 107 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Notice in the Details View that this is an ICMP Echo Request message.
» Expand the IPv4 Message Header in the Details View.
Here you will see that the Time To Live value for this message is 1, as expected.
» Select ICMP Message #7.
Notice that the Time To Live field value is now 2.
» Select ICMP Message #13.
And now it’'s 3, again as anticipated.
» Select Any Even-Numbered Message.

These should all be ICMP messages with a Type of 11 and Code of 0, which are Time
Exceeded messages corresponding to the Time To Live field expiring in transit (Figure 80).
Note that there is another type of Time Exceeded message as well, which is generated if it
takes too long to reassemble a fragmented packet; this has a Code value of 1.

Details for "Ethernet 68.85.142.61 to 192.168.1.116"

Message on Ethernet : 70 bytes captured EC F4 BB 6E 01 3C 00 20 ...n.<.. *

Ethernet, Src: WesternD_CD:D2:26 (00:90:A9:CD:D2:26), Dest: EC:F4:| 25 cp D2 26 02 00 45 CO ...&..E.

Internet Protocol Version 4, Src: 68.85.142.61, Dest: 192.168.1.1;].6 |loo 38 DC 84 00 00 FE 01 .E......

= Internet Control Message Protocol v4, Type:11, Code:0 - TTL expired in N T _
Type:11, Code:0 - TTL expired in transit 4R D1 44 55 8E 3D CO A8 J.DU.=.. |
Checksum: OxFAFF 01 74 0B 00 F4 FF 00 00 .t......

00 00 45 20 00 S5C 5& 4E ..E .\IN
00 00 01 01 74 4C CO A8tL.. —
4 i H|[01 74 AD C2 7B 08 08 00 .t..{... =

Figure 80: ICMP Time Exceeded Message Details.

And that will conclude our little journey into the magical world of ICMP messages. Let’s tidy
up...

» Close Command Prompt: Enter exit in the command prompt and press Enter to close
the box.

» Enter Static Mode.

Version 1.0 - August 3, 2015 108 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.2 Creating and Transmitting Custom IP Datagrams

As we mentioned in the introduction, we aren’t going to do a lot of work with IP messages by
themselves, because real TCP/IP traffic generally consists of data from higher-layer protocols
carried within IP packets. That said, it makes sense to start with just IP before complicating
matters with additional protocols. Our work here will help us gain familiarity with IP, setting the
stage for working with messages that are carried within it, including ICMP, UDP and TCP.

In this lab we’ll program both of the EEVB nodes to send a simple message that has just
Ethernet and IP headers, with a custom data field carrying a sequential counter. We’'ll also
continue learning more about how to do things with CoreMinis, this time by creating a script
that allows Node A and Node B to behave differently despite running the same setup.

Part 3.2A Reset Vehicle Spy 3 to Known Working State

To ensure that we have no leftover settings from earlier labs, and to accommodate those who
may be starting this section from scratch, let’s restart Vehicle Spy 3. We’'ll also load the custom
column setup file we created in Lab 1.1 so that the Messages View is set to show Ethernet
traffic.

» Close Vehicle Spy 3.
» Start Vehicle Spy 3.

» Load Custom Column Setup File: Double-click 1.1 Custom Column Setup
under either the | Recent | or | My Setups| tab.

Part 3.2B Create and Customize IPv4 Transmit and Receive Messages

We will create two IPv4 transmit messages, one for each of the two nodes to send on a regular
basis. First, the message that Node A will send.

» Switch to Messages Editor, Transmit Side.

» Create a New Transmit Message: Click the dF button to create a new transmit
message.

» Rename Transmit Message: Rename the message from Tx Message Ethernet 1 to
Node A IPv4.

» Change EtherType to IPv4.

After this is done, tabs will appear in the signals area: Ethernet Header, IPv4 Header and IPv4
Data.

» Add Data Signal: Click the *:/| button in the signals area.

» Rename Data Signal: Change the name of the signal from Signal 18 to Node A
Counter.

Version 1.0 - August 3, 2015 109 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

As always, default values for all the fields in this message will be supplied by Vehicle Spy

3 using its built-in templates. You can customize these using the Ethernet Packet Template
Editor, just as we did in Lab 1.4 for raw Ethernet frames, but we won’t do so now. As we have
also done before, we can make individual modifications to field values using the Tx Panel, but
we don’t actually need to change anything for this message.

Now let’'s make a message for Node B, following the same steps with minor variations.
» Create a New Transmit Message.

» Rename Transmit Message: Rename the message from Tx Message Ethernet 2 to
Node B IPv4.

» Change EtherType to IPv4.
» Add Data Signal.
» Rename Data Signal: Of course, this time we’ll call it Node B Counter.

This message will have the same default values as the message for Node A. Since this
message is for Node B, that’s not what we want, so this time we do need to use the Tx Panel.

» Switch to Tx Panel.
» Select Node B IPv4 Message.

» Swap Destination MAC Address and Source MAC Address Values: Change
the Destination MAC Address value to 00:FC:70:00:00:01 and the Source to
00:FC:70:00:00:02, the opposite of what we had for Node A IPv4.

» Swap Source IP Address and Destination IP Address: Repeat the swap for the IP
addresses in the IPv4 header.

Finally, we need to ensure we have receive messages to match these transmit messages so
that they are properly recognized by Vehicle Spy 3.

» Switch to Messages Editor.
» Copy Node A IPv4 Message to Receive Side.
» Copy Node B IPv4 Message to Receive Side.

Our messages are now done. Let’s save this file to ensure we keep these changes (and so we
don’t overwrite 1.7 Custom Column Setup).

» Save the Setup File: Save the setup file as 3.2 IPv4 Transmit.

Part 3.2C Create Function Block to Transmit IPv4 Messages

As mentioned at the start of this lab, unlike in previous examples, we are not making different
setups for the two EEVB nodes—we will have only one function block script for both nodes. In

Version 1.0 - August 3, 2015 110 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

order to have this script behave correctly, it must be able to determine dynamically which node
it is running on. Fortunately, there’s a simple trick that makes this easy.

Vehicle Spy 3 allows function block scripts to access a number of special internal values that
correspond to hardware device characteristics. We used these earlier in the Lab Manual when
we had scripts take actions based on EEVB pushbutton presses or the value of potentiometer

dials.

Another special value present in Vehicle Spy 3 is the serial number of the device running the
script. The EEVB is designed so that Node A always has an even-numbered serial number,
while Node B’s serial number is that of Node A plus 1. We can thus simply use the modulo
(division remainder) function to determine which node the script is running on.

>

>
>
>

>

Switch to Function Blocks.
Add a New Function Block Script.
Add If Statement in Step 1.

Enter If Statement Condition: Double-click on the Yalue field, and in the

Expression Editor select [@Physical I0 from the menu on the left. Expand

the General neoVI Hardware section using the [+ button, and double-click

Device Serial Mumber. Then click in the Expression field after the closing curly brace
and add _mod 2 = 0. Press Enter or click [_oc__].

Enter If Statement Comment: Use this comment: Modulo 2 returns 0 for an even
number, representing Node A, or 1 for an odd number, which is Node B..

Add Set Value Statement.

Enter Set Value Condition: Open the Expression Editor for Step 2, select

2 Tx Messages from the left menu and under Mode A IPv4 double-click

Mode A Counter. The value {Node A Counter (Value) :out0-sig18-0} appears in the
Value To Set field. Now press the button to add this same entry to the
Expression field. Click at the end of it and add +1. Press Enter or click [_oc__].

Add Set Value Comment: Increment counter each time Node A message is sent..
Add Transmit Statement: Create a Transmit statement in Step 3 to send Node A IPv4.

Add Else Statement: This separates the code that runs on Node A and that used by
Node B.

Add Set Value Statement.

Enter Set Value Condition: This will be the same as the previous Set Value condition,
with two changes. First, select Mode B Counter rather than Mode A Counter.
Second, decrement the counter rather than incrementing it (so put -1 at the end of the
Expression field).

Enter Set Value Comment: Decrement counter each time Node B message is sent..

Version 1.0 - August 3, 2015 111 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Add Transmit Statement to Send Node B IPv4.

» Add End If Statement.

» Add Wait For Statement: After adding the statement, double-click on the Yalue
field and then press = to open the Expression Editor. Then enter a value of 100 in
the Expression field. This is to slow down the EEVB so it's not sending hundreds of
messages per second.

You can leave the two extra blank steps. The result should appear similar to Figure 81.

Step |Description Value Comment
1 E‘ If {Device Serial Num} mod 2 =0 /f Modulo 2 returns @ for an even number, representing Node A, or 1 for an odd number, which is Mode B.
2 Set Value {{mgg: : EEEEE; g::ﬂ:g Eﬁg::g }g Ei:l /f Increment counter each time MNode A message is sent.
3 B Transmit Node A IPv4
4 [HElkse
5 Set Value {{mgg: g EEEEE; g::ﬂg EEH::S }ggi; /f Decrement counter each time Mode B message is sent.
& B, Transmit Mode B IPv4
7 [EendIf
8 £%) Wait For =100
9

Figure 81: Function Block Steps for IPv4 Message Transmit.

Note: Technically it is poor programming practice to increment

or decrement a variable without first initializing it to a known
value. However, Vehicle Spy 3 automatically sets all variables to 0
for you if they are not initialized to another value, a provision we are
exploiting here for simplicity.

The script is now done except for changing it to only run on the EEVB.
» Change Start Type to Start Inmediately Embedded Only.
And now let’s be sure to save our work.

» Save the Setup Under the Current File Name: Select Save from the File menu.

Part 3.2D Download and Test IPv4 Transmit Script

We will now send this script to both EEVB nodes and go online to see how well it works.
» Send CoreMini to Node A.
» Send CoreMini to Node B.

» Switch to Messages View.

Version 1.0 - August 3, 2015 112 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Filter for Custom IPv4 Messages: Enter IPv4 in the Description field as a filter, so we
only see our messages.

» Go Online.

You should see Node A IPv4 and Node B IPv4 messages arriving approximately every 100 ms,
as expected. Let’s take a look at the Node A Counter and Node B Counter fields; since IPv4
messages have a lot of fields, it's easier to do this with Details View off, especially on smaller

screens.

» Turn Off Details View.

» Show Signals in Node A IPv4: Click the |+| next to Mode A IPv4 in Messages View.

You should see a display similar to Figure 82. Notice that Node A Counter increases in value
with every message receipt, rolling over back to 0 after it hits 255.

3.2 IPv4 Transmit.vws3 - Vehicle Spy [=HE éj
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Tools Help
i/ (%] | [Desktopl @, pata |~
@ Messages ES)| B, TxPanel Izll:- Furiction Blocks Izﬂ =]
[Tarilter | [ooadd | [&scol | [Tpetails | [Expand E] [&T Time Abg[M Pause] save | [X Erase] Find: @ .
% X Count | Time Tx |Er %l Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAN [Len
(=) oo Messages Fitter i
Bl ova FIE 101.022ms Node A IPv4 10.0.0.1 10.0.0.2 Pv4 0 *
Custom 1 5%, Destination MAC Address = Intrepid_00:00:02 [FC70000002]
Custom 2 B¢ Source MAC Address = Intrepid_00:00:01 [FC70000001]
Custom 3 A%, EtherType or Length = IPv4 [300]
Custom 4 A% 1P Version = 4[4
Custom 5 A% Internet Header Length = 5[4
Custom & _E‘_:n: Differentiated Services Code Point = 0 [0
& & Data Types A%, Explicit Congestion Notification = 0 [0
A% Total Length = 21 [15]
Network A%, Identification = 0 [0
3 Transmit A%, Flag_Reserved = False [0]
@) Errors . A%, Flag_DF = False [0]
Changing A%, Flag_MF = False [0]
Mo Match A%, Fragment Offset = 0 [
Completed Msg A%, Time To Live = 128 [80]
B?:,Networks B _z::} Protocol = Reserved [FF]
A, TPvé Header Checksum = 9704 [25E8]
neavl A%, Source IP Address = 10.0.0.1 [A00D0OO1]
Ethernet B¢ Destination IP Address - 10.0.0.2 [A00000Z]
A% MNode A Counter = FHES a
oo EE 100.993 ms Mode B IPv4 10.0.0.2 10.0.0.1 IPv4 &0
.
=4 [b
P | w0 6 1w 3 @ | & Columns |Ethernet v|[Setup ... Reviews Buffer... :
=] * [edit) * [edit) * (edit) adit) * [edit) * [(edit) Mo Bus Errors

Figure 82: Node IPv4 Message Signals.

» Collapse Signals in Node A IPv4.

Version 1.0 - August 3, 2015

113

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Show Signals in Node B IPv4.

Conversely, Node B Counter goes down until it hits 0, and then rolls over to 255 and begins
again.

» Collapse Signals in Node B IPv4.

Leave Vehicle Spy 3 active and online for the next lab.

Version 1.0 - August 3, 2015 114 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.3 Using Signal Lists and Plots to Display Data and Adding a Second
Simultaneous CoreMini Script for Node Synchronization

We're now going to tinker with the script we wrote in the previous lab to tell the EEVB’s nodes
to send IPv4 messages. First, we'll create a signal list to allow us to isolate the counter fields
we are interested in monitoring. Second, we’ll graphically display those counters using a signal
plot, and tailor the window setup so we can see the plot and incoming messages at the same
time. Finally, we will write a second script to address a minor issue with the original one, and
have both nodes run both scripts at the same time.

This lab assumes that the EEVB and Vehicle Spy 3 have been left in the state they were in
at the conclusion of Lab 3.2. If this is not the case, you can get back to the right place by
reloading the 3.2 IPv4 Transmit setup file you created in that lab, and then following the steps
in Part 3.2D.

Part 3.3A Create a Signal List to Isolate Specific Message Fields

In the previous lab we were able to look at the increasing Node A Counter field in the
messages coming from Node A, and its decreasing counterpart, Node B Counter, in those
originating with Node B. However, it was kind of a pain to do, because these fields were buried
deep within messages with many fields. What if we had 10 or 20 such fields to examine rather
than two? It would be very hard to keep track of them.

This is why Vehicle Spy 3 provides a perfect tool to make it easier to hand-pick specific signals
and monitor their values.

» Switch to Signal Lists: Select Signal List from the Measurement menu.

You will see a large blank area with three columns: Signal, Value and Update. Above these
headers is a drop-down box currently with the value Default in it. Vehicle Spy 3 allows you

to keep track of many signals, and in some applications it is useful to be able to organize
these into signal groups that you can switch among. In our case we are only interested in two
signals, so we’ll just use the default signal group.

» Select Signals: Click the [seectsgnas.. | button.

A dialog box appears that looks very much like the Expression Editor we have seen a number
of times before. The main difference is that instead of text entry boxes at the top left, there’s a
large box where signals are displayed when selected.

» Select Node A Counter: Select =«Rx Messages from the menu on the left, then find
Mode A Counter under the Mode A IPv4 message and double-click it.

The entry Node A Counter (Value) appears in the signal list at the top left.

» Select Node B Counter: Repeat the process for Mode B Counter. (You can also press
the | Addnewsianal | button instead of double-clicking.)

» Finish Signal Selection: Click to save the signal selections you have made.

Version 1.0 - August 3, 2015 115 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You will be returned to the signal list screen, which will now display the two counters we
selected. The Value column will display their value in real time, while the Update column
contains a “spinner” to show that the value is changing—a useful feature when you have large
numbers of signals to monitor (Figure 83).

EDRDET:)it (&) (&) ComvTotama)
Signal Value Update

E'}_v Node A Counter (Value) 64 |/

A%, Node B Counter {Value) a1 -

Figure 83: Signal List Showing Node A Counter and Node B Counter.

's 3

Note: If the signals sit at 0 without updating, check to make sure

you selected Node A Counter and Node B Counter under Rx
Messages rather than under Tx Messages. The fields in the transmit
messages don’t change because they are being incremented in the
EEVB nodes, not within Vehicle Spy 3 on the PC.

Part 3.3B Create a Signal Plot to Display Counter Data Graphically

Signal lists allow us to focus on only the data we want to examine, while leaving uninteresting
fields or signals behind. However, they still suffer from the problem of just being text displays
of numeric (or alphanumeric) values. Suppose that instead of a very regular increasing

or decreasing value, we had a signal that varied with some degree of randomness, and

we needed to watch for rare but important spikes or dips in the value. In some cases the
fluctuation we are looking for might last only a fraction of a second. This would be very hard to
detect with a text display, but immediately obvious in a graphical presentation.

As they say, a picture is worth a thousand words; in Vehicle Spy 3 “pictures” are created using
signal plots.

» Switch to Signal Plots: Select Signal Plot from the Measurement menu.

Boom! That was easy (Figure 84). The signal plots for our two messages are immediately
displayed because the Signal Plot and Signal List features share the same signal definitions.
Using this graphical display we can easily see our increasing and decreasing counters.

Version 1.0 - August 3, 2015 116 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

3.2 IPv4 Transmitvs3 - Vehicle Spy S| E
File Setup Spy Metworks Measurement Embedded Tools Scripting and Autornation Run Tools Help
‘[~ | online (CoreMini active). . Platform:| (Mone) 4[4, | | (@ Deskiopl [3, Data |~
|="-u Messages Editor |§I|@ Messages Izllg T Panel Izllz- Function Blocks |§I| Signal List IE” Ev signal Plot@” (=]
PIotSignaIs E [Default V]’ Select Signals... ” Logging... .
Not Logging - Lines Collected: 0
|||| Wg Q|Q| |>|<| |n|§| b4 [valuexY leodeACounher(\c'alue) v] X Axis Span (S) 20 - |
240 1 240+ \
220 220 4
200 200
150 180 1
= =
g 180 E 160 1
K]]
3 2
s 140 'ﬁ 140 1
1 =
§ 120 § 120 1
o o
< 1]
2 o0 § 100
-]
F4 z
50 80
80 - 80 / .
40 40 1 .
20 20
[o-
T T T T T T T T T T T T T T T T T T T
858.0 860.0 862.0 8364.0 866.0 868.0 a70.0 8720 874.0 876.0
e] + [adit) + [edit) + (edit) *+ (edit) * [adit) * [edit) Mo Bus Errors

Figure 84: Signal Plot of Node A Counter and Node B Counter.

Of course we can easily adjust the plot to suit our needs. For example, we can change the
amount of time for which the signals are displayed, allowing us to examine more cycles of the
counter.

» Change the X-Axis Span Value: On the right side just above the signal display is a text
box next to the label X Axis Span {S). Click the downward arrow and select 100 (you
can also type this value in the box).

The display will clear and begin drawing the signal plots again; this time they will be more
compressed, allowing 100 seconds of data to be shown.

By default, Vehicle Spy 3 will automatically scale the Y axes to fit the data values it sees in
each signal, but we can change these as well if we wish.

» Enter Signal Plot Properties: Press the E button.

» Change the Node B Counter Y Axis: Click Mode B Counter {Value), then click the
axes | tab. Change the 255 value in the Span box to 500. Click | e |.

Version 1.0 - August 3, 2015 117 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

The signals will resume plotting again, but this time Node B Counter’s value will only peak at
about half the vertical height of the display. This looks weird, so let’'s change it back.

» Revert the Node B Counter Y Axis Change: Go back where you were and change the

500 value back to 255.

Finally, what if we want to look at signal plots while still being able to see messages coming
into Vehicle Spy 3 in the Messages View? You probably already know the answer: we just dock
the Signal Plot window on the screen and then bring up Messages View next to it. This time,

let’s try docking to the top of the display rather than the bottom.

» Dock the Signal Plot Window to the Top: Click and drag the |F' sinalFlet| tab until the
blue rectangle appears. Drag it to the docking symbol on the top of the window, then

release.

Vehicle Spy 3 “squishes” the plot to fit into the top half of the screen. Now we just select the

Messages View to display on the bottom.

» Switch to Messages View: Click the |@ Messages| tab, which should now be located near

the middle of the Vehicle Spy 3 screen.

There, we can now see our signal data graphically while viewing our incoming messages at

the same time (Figure 85).

3.2 IPvé Transmit.vs3 - Vehicle Spy = | B o
Eile Setup SpyNetworks Measurement Embedded Tools Scripting and Automation Run Tools Help

[+ | online (CoreMini active). ‘ Platform:| (None) | (4| | (B Desktop1 % Data ~
E+ Signal Plat [LEEE] e
Plot Signals E] By ”Dafault V][Select Signals...] [Logging...

Not Logging - Lines Collected: 0
I [+ & al&l Ba|E|&] ¢ ey + [Node & Counter (Valuc) | X#xisspen () 100 -
By

= = AN

o o .

2 w04 2 200+ .,

] [.

3 z o

b g 4

€ T .

3 g .

§ woq § w04 .

< o \\

3 3 J

-] g k

4 z < ,

o- o- -

T T T T
100 110 120 130

w0 Messages Editor |52 || @ Messages [E2][B T« Panel [52]| = Function Blocks [52 || 3= Sinal List [52 |

T T T
150 a0 170

8] Fin oes

[Mt Filter] [oo Add] [£ Seroll][T petails]E(uand
%X{ A |Count"l'|me ‘Tx|Er ‘%i Description |50urce ‘SrcPort|Desﬁnaﬁon |DstPort‘Eﬂ'varType|Protocol|\ILAN|Len N
o I N I = I | I
ava 100,974 ms MNode A IPv4 10.0.0.1 10.0.0.2 IPv4 &0
Custom 1
ava 100,969 ms Node B IPv4 10.0.0.2 10.0.0.1 IPv4 &0
Custom 2 =
Custom 3
Custom 4
Custom 5
Custom &
i= k3 Data Types
Metwork []] 3
N 1
@ Transmit - B \[E o e ouwo g R | L Cnlumns[Ethernet <[setp.. Review Buffer...
i * (edit) * (edit) * (edit) + (edit) + (edit) * (edit) No Bus Errors

Figure 85: Signal Plot and Messages View of Node A Counter and Node B Counter.

Version 1.0 - August 3, 2015 118

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

When you're ready, let’'s go back to a single view.

» Undock Signal Plot Window: Drag the |F sianalPiet header until the blue rectangle
appears, continue over to the window tabs area, and release.

Part 3.3C Synchronize the EEVB Nodes Using a Second Script

If you examine the signal plot we just created, you may notice something curious. Both nodes
start with their counters at 0, and one increments it each time while the other decrements

it. This means that the counters should go 1, 2, 3... and 255, 254, 253... so that their sum is
always 256 (or 0). It also should mean that both signals “wrap around” at about the same time,
which would be visible on the plot as both curves “snapping” up or down nearly simultaneously.
Yet you will probably see a gap between the vertical lines due to one “wrapping around” well
before the other, as was the case in both Figure 84 and Figure 85.

Think for a moment about why this might be.
Not sure? Here’s an exercise that may make it more clear.
» Go Offline.
» Send the CoreMini to Node A.
» Immediately send the CoreMini to Node B.
» Go Online.

Observe the approximate delay between when the red curve hits the top and the blue curve
hits the bottom, which can be “eyeballed” as the distance between the red and blue vertical
lines when the respective curves wrap around. Then do the following.

» Go Offline.

» Send the CoreMini to Node A.

» Wait Approximately 10 Seconds.
» Send the CoreMini to Node B.

» Go Online.

You'll now see that the distance between the red and blue lines is much larger (Figure 86).
That’s right—the reason the two counters don’t wrap around at the same time is because of
the time delay between when we send the CoreMini to Node A and when we send it to Node B.
Even though the programs seem to be synchronized, they start at different times, because the
CoreMini begins running as soon as it is downloaded on each node.

Version 1.0 - August 3, 2015 119 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

240

220

200

180

240

220 +

200 +

180

240

220

200

180

240

220 +

200 +

180

= = = =
T 104 © 160 T 104 @ 160
3 3 =) 2
T &l T o
2 1z 2 1z
~ 1404 T 140 ~ 1404 T 140
5 g 5]
- - - -
5 g 5 £
- i J 2 i
g3 w4 8 g3 w4 §
< P < m
2 100 ﬁ 100 2 100 ﬁ 100
[=] [=]
z z rd Zz
80 | 80 | 80 | 80 |
50 | 60 | 50 | 60 |
\ ,
b
40 40 \\ 40 407 \\
\\
20 - 20 20 - 20
b 4
5\ 5
o o o o
T T T T 1 T T T T T 1
10 2 0 10 20 0

Figure 86: Signal Delay Comparison. On the left, the signal plot when the CoreMini is sent to Node A and then immediately
to Node B; the red line hits 255 and wraps around about 5 seconds before the blue line hits 0. On the right, we wait about 10
seconds between sending to the two nodes, causing this delay to increase to around 15 seconds.

We can correct this in a number of ways. For the purposes of illustration, what we will do is
create a second script that allows us to manually synchronize the nodes using the EEVB’s
pushbutton inputs. This illustrates a cool feature of the EEVB and CoreMinis in general:
you can have more than one at a time and they will all run in parallel at the same time,
automatically, when downloaded.

» Go Offline.
» Switch to Function Blocks.

The structure of this script will be similar to the one we already have, since it also has to check

which node it is running on. To save time, why not duplicate the existing script and then modify
it?

» Duplicate Function Block 1: Click the existing function block, Function Elock 1. Click
the B2 button and then the E& button to create a duplicate called Function Block 2, and
then click that entry to select it.

» Switch to the Script Tab (If Necessary).

One thing we don’t need to be different on each node is the pushbutton check; each node
automatically only references its own inputs. So we just need a single If statement surrounding

Version 1.0 - August 3, 2015 120 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

the whole script. It will reference Switch 1 in the Physical 10 area, which should ring a bell from
earlier labs.

» Add If Statement Before Step 1.

» Enter If Statement Condition: Double-click on the ¥alue field, choose [Physical 10,
scroll down to Switches and double-click on Switch 1. Press Enter or click [_o¢_.

» Enter If Statement Comment: Reset counter to 0 when node pushbutton is held
down..

» Add End If Statement At End of Script: This should be Step 10 now.

Now we change our two Set Value statements so they set the counters to 0 rather than
incrementing or decrementing them.

» Edit Step 3 Value Entry: Double-click the Valug field for the first Set Value command,
change the Expression field to 0, and press Enter.

» Edit Step 3 Comment: Change the comment to Reset Node A Counter to O..

» Repeat Above Two Steps for Step 6: Of course, the comment this time will reference
Node B Counter.

We aren’t transmitting anything, of course, so let’s get rid of those commands. We also don’t
need the Wait For statement.

» Delete Both Transmit Statements.
» Delete Wait For Statement.

And that’s it, we're done; the resulting script should appear as in Figure 87.

Step |Description Value Commen' t
1 E* If 1Switch 1 (Value) :neol-swi-0-ndex{0)} ff Reset counter to 0 when node pushbutton is held down. .

2 E‘ If {Device Serial Num} mod 2 = 0 J/f Modulo 2 returns 0 for an even number, representing Node A, or 1 for an odd number, which is Node B.
3 Set Value {Mode A Counter (Value) :outD-sigl8-0} =0 j/Reset Mods A Counter to 0.

4 Ih Ese

5 Set Value {Node B Counter (Value) :outl-sig18-0} =0 //ResetNode B Counter to 0.

&

7

T2 endrf
T2 Endrf

Figure 87: Function Block Steps for IPv4 Message Transmit Synchronization.

Let’s save our work.

» Save the Setup File: Save the setup file as 3.3 IPv4 Transmit Synchronized.

Part 3.3D Download and Test Synchronization Script

As always, we now send the script to both EEVB nodes to test it out.
» Send CoreMini to Node A.
» Send CoreMini to Node B.

Version 1.0 - August 3, 2015 121 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Switch to Signal Plot.
» Go Online.

At first nothing will appear to have changed.
» Hold Down the Node A Pushbutton.
» Wait 5 Seconds.
» Release the Node A Pushbutton.

As long as the button is down, the red curve will be roughly flat and near the bottom of the

display. This makes sense since the pushbutton causes the counter to continually be reset to
0.

» Repeat the Above with the Node B Pushbutton.
Same deal, but naturally this time the value is constant at 255.
» Hold Down Both Pushbuttons.

» Release Both Pushbuttons Simultaneously.

Letting go of both buttons at the same time synchronizes the two nodes. They will now both hit
0 simultaneously, causing one to snap down at the same time the other snaps up (Figure 88).

3.3 IPv4 Transmit Synchronized.vs3 - Vehicle Spy ol
nt Embedded Tools Scripting and Automation Run Tools Help
Platform: (None)) (%] | [B Desktop1 1% pata |~
[Messsges Edtor | 53 || @ hsssages| 52 || &L TxPanet 53 || F* Sianal Flot [558]| & Function Blacks |52 || i) Signel List (52 | o
5 | Plot Signals B || Default - Select Signals... Logging. ..
E [:” I I Wof Logging - Lines Collected: 0
| [+ & al&| . ||| e [vauexy | Node 0 Counter (Value)] Xaxis Span) -
i '
240 240 4 N Y Y
5
5 \ \ \
Y '\ Y y
220 220 \\ 4 \\ \\
\
' \ 5
200 200 4 \\ \\\ \ \\
i !
Y b
180 o 180 \\ \\ \\ \\
= = \\ i \\ \
Y 160 g 160 ' \\ y \
w] 5\ Y Y N
& z \ '\ \ \
P M \ \ \
2 2 " B
c E \
5 4 § 1204 \\ '\ \\ \\
< [' \\ \ \
£ w0q 8 w04 N 'y 5\ \
o] % 5\ \
‘ ‘ ' \ A \
80 80 5 , Y |
\ \ \ A\
Y
60 60 \ \\ \\ \\
', '\ Y 5
04 24 \ h i \
\ kY N \
20 20 Y \\ \\
\\ \ |
o 0
T T T T T T T T T T
100 110 120 130 140 150 160 170 160 150
(=] No Bus Errors

Figure 88: Signal Plot of Node A Counter and Node B Counter After Synchronization.

» Go Offline.

Version 1.0 - August 3, 2015 122 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.4 Simulating the Ping Utility and Monitoring Ping Exchanges Using
a Graphical Panel

In Lab 3.1 we introduced the ping utility, which uses ICMP messages to test connectivity and
time latency between two hosts on a network or internetwork. In this lab, we will implement
our own simulation of this important yet simple tool, by setting up one node of the EEVB to
initiate pings while the other replies to it. On the PC, we will introduce Vehicle Spy 3’s powerful
graphical panel feature, using it to monitor the exchanges of Echo Request and Echo Reply
messages that our simulated ping client and server generate.

To save time, we will use pre-made setup files in this lab, and for the first time we’ll have three
of them: one for each EEVB node and one for the PC. Naturally, we will walk you through each
setup to ensure that you understand what they are doing.

Part 3.4A Set Up EEVB Node A to Send Echo Request Messages

Node A will be the initiator of our simulated pings, sending ICMP Echo Request messages to
Node B. We will use the node’s pushbutton to control this activity, sending a message once per
second while the button is held down.

» Load 3.4 Ping Request.
Let’s take a quick look at this setup, which is pretty straightforward.
» Switch to Messages Editor.

On the transmit side you'll find a single message definition, which is of course the Echo
Request we are sending. This is configured as an IPv4+ICMPv4 message. Note the two extra
fields (signals) we have defined, Identifier and Sequence Number, which as we saw earlier are
standard parts of Echo Request messages. (We decided to leave out the optional Data field
for simplicity.) No messages are defined on the receive side, since even though Node B sends
Echo Reply messages back to Node A, the latter node doesn’t do anything with them.

» Switch to Tx Panel.
» Click the Echo Request Message.

These are nearly all the standard VSpy defaults for Echo Request messages. The only item
changed is that we have put the value 1 into the I/dentifier field, since that's what the Windows
ping utility does. The Sequence Number field is filled in dynamically.

» Switch to Application Signals.

The single application signal, Sequence Counter, is used to keep track of the sequence
number of the last Echo Request sent so they are all uniquely identified, just like with the
normal ping utility.

» Switch to Function Blocks.

Version 1.0 - August 3, 2015 123 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

The simple script here (Figure 89) is triggered when the Node A pushbutton is detected as
being pressed down. If it is, the script increments Sequence Counter, puts its new value into
the Sequence Number field and transmits an Echo Request. It then waits a full second before
sending the next one (if the button is still down).

Step | Description Value Comment
1 Ef If I5witch 1 (value) :neo0-sw0-04ndex(0)} // Use pushbutton to trigger sending Echo Reguest from MNode A.
{5equence Counter :sigl-index(0)} =
2 Set Value {Sequence Counter :sigh-ndex(0)} + 1 [Increment sequence counter.
3 Set Value -ES?gélsﬂéﬁcr:uén fﬂgég;é _‘audgjfég)f -0} f{ 5et Sequence Number in Echo Request to current value of internal sequence counter,
4 B Transmit Echo Request
5 E\?} Wait For = 1000 ms /{ Wait for a second to avoid rapid-firing Echo Requests on a single pushbutton press.
& [RendIf

Figure 89: Ping Request Function Block Script.

That’s it, let's download it to Node A.
» Send CoreMini to Node A.
Part 3.4B Set Up EEVB Node A to Respond to Echo Request Messages with Echo
Reply Messages
As usually is the case, Node B will have complementary functionality to that of Node A.
» Load 3.4 Ping Reply: Discard changes, if prompted.
Once again we’ll start by taking a look at the details of how the setup works.
» Switch to Messages Editor.

On the receive side we have the same Echo Request message definition as in the Ping
Request setup transmit side; no surprise there. The transmit message is the Echo Reply that
this node will send. Notice that the Destination value is zero, since that is filled in based on the
Echo Request received.

» Switch to Tx Panel.
» Click the Echo Reply Message.

This message has the Source values appropriate to Node B and a Type that has been set to
value 0 (for Echo Reply) rather than 8 (for Echo Request).

» Switch to Function Blocks.

This script does more and so is more complex (Figure 90). First we wait until an Echo Request
message is seen. We check the Type field to make sure this is an Echo Request (though this is
only a formality, since of course we already know what Node A is sending). When a request is
seen we fill in four fields in the Echo Reply using values from the Echo Request: the Identifier
and Sequence Number fields are copied directly, while the Destination MAC Address and
Destination IP Address fields come from their Source counterparts in the Echo Request.

Version 1.0 - August 3, 2015 124 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Step | Description Value Comment
1 x‘:’} Wait Until {Echo Request (Present) :in0-0% {f Wait for an Echo Request to be received from Mode A,
2 Set Value {Echo Request (Present) :in0-0} =0 /f Clear Present flag to avoid triggering a reply more than once per request.
3 Ef If {Type (Value) :inD-sig13-0} =8 I In theory this could be a different type of ICMP message; ensure it is an Echo Request before proceeding.

{Identifier {Value) :outD-sig21-0} = {Identifier

4 Set Value (Value) :in0-sig21-0} /I Copy Identifier field from Echo Reguest.
{5equence Mumber (Value) :outd-sig22-0% = .
5 Set Value ISequence Number (Value) fn0-sig22-0} {{ Copy Sequence Number from Echo Request.
3 Set Value ED-?SSES?;T‘IES Edildrg;zsa-'gj nlau)E'?n:DD:?gj 145_:3_:1}0 0} /i Set Destination MAC Address of Eche Reply to Source MAC Address of Echo Request,
7 Set Value ?E;gﬂiioﬂjlzdtdr:;sagj éu)'??n:g:?gj 1"2%1}?-0} /f Set Destination IP Address of Echo Reply to Source IP Address of Echo Reguest.
8 & Transmit Echo Reply
9 [ZEndIf

10
Figure 90: Ping Reply Function Block Script.
This script goes to Node B.
» Download CoreMini to Node B.

Part 3.4C Set Up Vehicle Spy 3 on the PC to Monitor Ping Message Exchanges
Next, let’s load the special setup for the PC that we’ll use to watch the ping simulation.
» Load 3.4 Ping Monitor: Again, discard changes if prompted.

You will immediately see something new: a gray screen with a gauge that looks somewhat like
a simplified car speedometer. We'll get back to this shortly. Let’s start by, as usual, looking at
the defined messages.

» Switch to Messages Editor.

Here we have definitions for the Echo Request and Echo Reply messages on the receive side.
There’s nothing on the transmit side since we aren’t transmitting anything.

» Switch to Application Signals.
We have three signals defined here:
e Ping Time: The most recently calculated simulated ping time.
e Update Button: Controls whether or not the graphical panel updates.

e Most Recent Sequence Number: Stores the Sequence Number of the last Echo Reply
message seen.

The use of these signals will be clarified in a moment.
» Switch to Function Blocks.

This setup’s script (Figure 91) watches for Echo Request and Echo Reply messages and
updates the graphical panel we saw when we first loaded this setup. First, it checks the
graphical panel’s update button, doing nothing unless it’s on. If it is, the script waits until it sees
an Echo Request message and the Echo Reply message that follows. It then calculates the

Version 1.0 - August 3, 2015 125 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Ping Time application signal as the difference between the Echo Reply timestamp and that
of the Echo Request, rounding and storing the value in milliseconds to three decimal places.
Finally, it updates the Most Request Sequence Number field.

Step |Description Value Comment
1 E If {Update Button :sig2-index (i)} /{ Do not update if the update button is off.
2 E Wait Until {Echo Request (Fresent) :ind-0} /{ Wait for receipt of Echo Request sent from Node A to Node B.
3 Set Value {Echo Request (Fresent) :ind-0} =0 /{ Prevent multiple triggering.
4 E‘:’} Wait Until {Echo Reply (Present) :in1-0} /{ Wait for Echo Reply from Node B to Node A.
5 Set Value {Echo Reply (Present) :in1-0} =0 /{ Ensure the previous step isn't triggered again until another Echo Reply is seen.
s Set Value E{Ping Time :sig 1-4ndex(0)} = int[({Echq Reply {Update Rate (abs)) :in1-3} /{ Set current ping time to difference between timestamps of Echo Reply and Echo
i- {Echo Request (Update Rate (abs)) :in0-3}) * 1000000 + .5) [1000 { Request messages.
7 Set Value ﬁ;ﬁgﬁ,ﬁg:ﬁf}m Number :sig3-index(0)} = {Sequence Number /{ Update display of most recent sequence number based on value in Echa Reply,

[2 End1f

oo

Figure 91: Ping Monitor Function Block Script.

Part 3.4D Monitor Ping Message Exchanges Using Messages View

Before we go back to the graphical panel, let’s look at the message exchange in the way we
usually do.

» Switch to Messages View.

» Filter for ICMPv4 Messages: Enter ICMPv4 in the Protocal filter field.
» Enter Scroll Mode.

» Enable Details View: It may be turned off from an earlier lab.

» Go Online.

Nothing happens. Remember that Node A doesn’t send Echo Request messages unless its
pushbutton is held down.

» Hold Down the Node A Pushbutton.

You should see several Echo Request | Echo Reply pairs show up (Figure 92). The sets will
be separated by about one second from each other, with the time between request and reply
roughly 1 to 2 milliseconds.

» Go Offline.

Version 1.0 - August 3, 2015 126 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

3.4 Ping Monitorvs3 - Vehicle Spy ol S

File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Teels Help

& - offline D\atform:[(Nunej v] (B Desktop 1 (3, Data |~

=5 Messages Edtor [53 || @ Messages (58] | = Function Blocks | 53 || " Applcation Signais [52 || 8 Giphicsl Pansls [52 | i
[™ Filtar] [oo Add] [£.- Scroll] [" Details Expand E] AT Time Abs) Pause Find: |Des |
% x] |Line |ﬂma |Tx |Er Desdription |50urca ‘Src Port|Dashnaﬁon |Dst PortlEﬂ'verTypelPromcol|\ILAN Len |
: Fiter | | 1P | |
=) oo Messages
we 1 Echo Request 10.0.0.1 10.0.0.2 P4 ICMPv4 &0
Custom 1
o 2 1.642ms Echo Reply 10.0.0.2 10.0.0.1 P4 ICMPv4 &0
Custam 2 o, 3 1.000278s Echo Request 10.0.0.1 10.0.0.2 o oMV 60
Custom 3 o 4 1.677ms Echa Reply 10.0.0.2 10.0.0.1 Pvé ICMPv4 &0
Custom 4 o 5 999.266ms Echo Request 10.0.0.1 10.0.0.2 P4 ICMPv4 &0
Custom 5 o 5 L1637 ms Echa Reply 10.0.0.2 10.0.0.1 IPv4 ICMPv4 &0
Custom & o 7 999.274ms Echo Request 10.0.0.1 10.0.0.2 P4 ICMPv4 &0
o 8 1.683ms Echo Reply 10.0.0.2 10.0.0.1 Pya ICMPv4 &0
= i3 Data Types
Metwork

@ Transmit

@) Errors
Changing <« r
Mo Match Details for "Echo Request”
N
Comektedvag Massage on Ethernet : 60 Name Value ~Jloo #c 70 ¢0 00 02 00 FC ..p.....
3 2 Networks o f‘:er”ettfpsrtc‘ I”It;eF‘d—Uf Destination MAC Address Intrepid_00:00:02 | |70 00 00 01 08 00 45 00 E.
nternet Protocol Version | =
neoVl Source MAC Address Intrepid_00:00:01 00 1C 00 00 00 00 80 01
Internet Control Message ~
Ethernet EtherType or Length TPvd 26 DE OR 00 00 01 OB 00 &uuvueees
TP Version 4 00 02 08 00 F7 FD 00 D1
Internet Header Length 5 00 01 00 00 00 OO 00 00
Differentiated Services Cot 0 00 00 00 00 00 00 00 00
Explicit Congestion Motifica 0 00 00 00 00
Total Length 28
4 [3) 3 -
Idantification 0
Details |Reversing|
- ‘ o ee w37 R ‘ oFa Co\umns[Ether’net vl[Setup ...] Review Buffer... G
iz * (edit) * (edit) * (edit) * (edit) * (edit) * [(edit) Mo Bus Errors

Figure 92: Ping Message Exchange. Node A sends Echo Request messages once per second when its pushbutton is held
down; Node B sends back Echo Reply messages after receiving them.

Part 3.4E Monitor Ping Message Exchanges Using the Graphical Panel
Alright, let’s go back to that fancy new screen now.
» Switch to Graphical Panels: Click the |i& Graphical Paneis| tab.

Graphical panels allow you to create your own graphical interfaces to Vehicle Spy 3 scripts and
functions. You can mix and match standard graphical user interface (GUI) features such as
buttons and text blocks with unique items specific to Vehicle Spy 3.

In this example we’ve created a simple interface to allow us to monitor the activity of the EEVB
as it sends ping messages back and forth. The meter in the center monitors the most recently
observed ping time calculated by the function block script, presenting it in a visual fashion.
Below it is a readout showing the sequence number of the last observed Echo Reply. And
below that is the Update button; when it is pressed down (on) the meter and the sequence
number field update; when it is up (off) they are frozen.

» Go Online.
» Turn the Update Button Off (If Necessary).
» Hold Down the Node A Pushbutton.

Version 1.0 - August 3, 2015 127 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Echo Request and Echo Reply messages are being generated, as we saw above, but the
graphical panel doesn’t update continuously because Update is off.

» Press the Update Button to Turn it On.
» Press the Node A Pushbutton: Hold it down for a few seconds.

Now the display will update every second as new messages come in (Figure 93). The
“speedometer” will show the most recent ping time both graphically and as a text value, while
the box below updates with the sequence number of the last exchange.

Ping Time
1.144

] 2

Maost Recent Sequence Mumber: 24

Update On

Figure 93: Graphical Panel Ping Display. When the Update button is on, the ping time for each Echo Request | Echo Reply
exchange is shown graphically, along with the sequence number of the most recent transaction.

» Turn the Update Button Off.
» Hold Down the Node A Pushbutton For Five Seconds.
» Turn the Update Button On.

Notice that the display “jumps” when updating is re-enabled, showing the results of the last
transaction that took place while updates were off.

As you can see, this is a more “civilized” way of looking at data and controlling how Vehicle
Spy 3 works. And this is just a tiny taste of what you can do with graphical panels.

» Go Offline.
» Unlock the Graphical Panel: Click the L] button at the bottom right of the screen.

The panel now switches into edit mode, where you can add or remove controls or change the
properties of existing ones. Along the bottom you will see icons corresponding to the various
items you can put into a graphical panel.

» Click the Ping Time Meter Control.

After selecting this control, its properties are displayed on the right side. Notice that the Signal
field entry is Ping Time, which is the application signal we defined whose value is displayed
here.

Version 1.0 - August 3, 2015 128 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Change Needle Color: Double-click the red rectangle next to the MeedleColar

property. Select a different color, say green.

The color of the needle on the meter changes to the color you chose; Figure 94 shows the
result of the change, as well as the overall look of the graphical panel editing layout. Feel
free to tinker with the many other controls available here; you’ll discover that you have nearly

unlimited ability to tailor the graphical panel to suit your needs.

3.4 Ping Monitor.vs3 - Vehicle Spy

File Setup SpyNetworks Measurement Embedded Tools Scripting and Automation Run Tools Help

Byl (X [} Desktop 1

o = e |

3, Data |~
i

..................................... u o
..................................... Ping Time
..................................... 1144
..................................... o 2
..................................... T
Ll llllllloill.ll.... MostRecentSequence Number 84l [0 000000000

E' Meter

Width
Top
Left
Height

BackColor
Transparent
BorderStyle
Font

5 | Tag

Enabled
Caption
ShowCaption
Alignment
Minimum
Maximum
Signal
MNeedleColor

Angle

Properties | Font | Tools | Grid |

210
140
330
130

.
.

0-Opague
1-5unken

Arial

1-Yes

1-Yes
2-Center
a

2

Ping Time

120

Figure 94: Editing a Graphical Panel.

Mo

Bus Errors

Version 1.0 - August 3, 2015 129

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.5 Manual Ping from PC to EEVB Using RAD-Moon

In Lab 2.6 we adapted the ARP exchange we had set up in the EEVB to allow the PC to

send ARP Request messages and have one of the EEVB nodes respond with ARP Reply
messages. This was made possible by Intrepid’s RAD-Moon media converter, which allows

a standard Ethernet device such as a PC network interface card to talk directly to the EEVB
BroadR-Reach nodes. We will now make the same sort of modification to our ICMP ping
simulation, changing Lab 3.4 so that instead of Node A sending the Echo Request messages,
we send them from Vehicle Spy 3 on the PC.

As was the case with Lab 2.6, this lab is optional, since it requires a RAD-Moon to be
completed. You will also need a PC with a standard wired Ethernet connection for this lab
to work properly. An Ethernet hub or switch will make the hardware setup easier but is not
required.

This lab assumes you have continued from Lab 3.4 and so already have the EEVB nodes
running the appropriate scripts for the ping simulation.
Part 3.5A Set Up the Ethernet EVB and RAD-Moon for Bidirectional Communication

You need to change the physical configuration of the PC and EEVB for this lab so that the two
are linked through the RAD-Moon. Follow these steps, which should already be familiar if you
did Lab 2.6.

» Connect USB Cable to RAD-Moon.
» Disconnect BroadR-Reach Cable from EEVB Node A.
» Connect BroadR-Reach Cable to RAD-Moon.
» Connect Ethernet Cable to RAD-Moon and PC Jack or Hub/Switch.
This process is described in detail in Part 2.6A; please refer there if you need step by step
instructions.
Part 3.5B Load Vehicle Spy 3 Setup for Manual Ping
First, let's make sure we remember to change the Ethernet interface.

» Change Ethernet Interface Selection: On the Logon Screen, select the Ethernet
interface corresponding to the PC’s Ethernet port.

Assuming you have continued here after doing Lab 3.4, Node B should already be set to look
for Echo Request messages and respond with Echo Reply messages, and we won'’t be using
Node A. This means we don’t need to change anything on the EEVB at all; we just need a
new setup for the PC, which this time has been provided for you with a pre-made file. This is
essentially a combination of the 3.4 Ping Request and 3.4 Ping Monitor setups, since we are
now having VSpy perform both of those functions.

Version 1.0 - August 3, 2015 130 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Load 3.5 Ping Request and Monitor.

The graphical panel that loads will look familiar from Lab 3.4, but you can see that the Update
button has been replaced by a Send Ping button. In the previous lab the Echo Request
messages were generated by a pushbutton on the EEVB; the Send Ping button serves that
role here.

» Switch to Messages Editor.

The Echo Request definition is on the transmit side and the Echo Reply message on the
receive side, as you'd expect. These are the same as they were in earlier labs.

» Switch to Application Signals.

The Ping Time and Most Recent Sequence Number application signals are the same as
the ones we used in 3.4 Ping Monitor. Sequence Counter is used to generate sequentially-
numbered Echo Request messages as in 3.4 Ping Request.

» Switch to Function Blocks.

This script (Figure 95) is also a combination of ones we've seen before. First, it increments the
Sequence Counter variable and then sends an Echo Request message with the new value

in its Sequence Number field. It waits for an Echo Reply message, calculates the Ping Time
signal as the difference between the Echo Reply and Echo Request timestamps, and updates
the Most Request Sequence Number field.

Step |Description Value Comment

{Sequence Counter :sig4-index(0)} = {Sequence Counter :sigd-index(D)} |,

1 Set Value Increment sequence counter,

+1
2 Set Value :{;;iﬂﬁg;i[l‘;g;nber (Value) :outd-sig22-0} = {Sequence Counter /f Set Sequence Number in Echo Request to current value of internal sequence counter.
B, transmit Echo Request {f Send Echo Reguest.
4 :‘?} Wait Until {Echo Reply (Present) :in1-0} /i Wait for Eche Reply from Node B to Node A,
5 Set Value {Echo Reply (Present) :in1-0} =0 {{ Ensure the previous step isn't triggered again until another Echo Reply is seen,
s et val {Ping Time :sig1-index(0)} = int{{{Echo Reply {Update Rate (abs)) :in1-3} // Set current ping time to difference between timestamp of Echo Reply and Echo
et Value - {Echo Request (Update Rate (abs)) outd-3}) * 1000000 +.5) / 1000 Reguest messages,
7 Set Value &M;j;?ﬁﬁlﬁ:;zq%?nce Number :sig3-index(0)} = {Sequence Number /{ Update display of most recent sequence number based on value in Echo Reply.
g [Hstop nfa

Figure 95: Ping Request and Monitor Function Block Script.

One noteworthy difference here is that this script’s start type is Manual. This is because we
only want this script to run when we tell it to using the Send Ping button on the graphical panel.
Part 3.5C Generate and Monitor Ping Message Exchanges Using the Graphical Panel

Before we go back to our graphical panel, let’s set up Messages View to show only the
messages we want.

» Switch to Messages View.

Version 1.0 - August 3, 2015 131 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Set Custom Filter: Enter Echo in the Description filter field so only our special
messages are shown.

» Enter Scroll Mode.
Okay, let’'s go back to our graphical panel now.
» Switch to Graphical Panels.
» Go Online.
» Press the Send Ping Button.

You should see the “needle” on the Ping Time meter display a time somewhere in the range of
1 to 3 milliseconds, though it may be less. The Most Recent Sequence Number displayed will

be 1 (Figure 96).

Fing Time
2328

] 5

Maost Recent Sequence Number: 1

Send Ping

In fact, if you go offline and then online, the sequence number shown will again be 1 after the
Send Ping button is pressed. This is different from the way it worked when we were sending
from EEVB Node A, because Vehicle Spy 3 application signals are cleared each time you go
online, while those in EEVB CoreMinis are only reset if the board is power-cycled.

Figure 96: Graphical Panel Manual Ping Display.

» Switch to Messages View.

You will now see the Echo Request and Echo Reply message exchange that was summarized
in the graphical panel display (Figure 97). The elapsed time between the messages should
match that shown in the graphical panel, as is the case in our figures.

Line |Time Tx |Er |Description Source 5rc Port | Destination Dst Port | EtherType | Protocol | VLAM |Len
Filter Echo
E 1 _}f] Echo Request 10.0.0.1 10.0.0.2 Pva ICMPv4 42
o%o 2 2.326 ms Echo Reply 10.0.0.2 10.0.0.1 Pva ICMPv4 B0

Figure 97: Manual Ping Echo Request / Echo Reply Exchange.

Version 1.0 - August 3, 2015 132 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Switch to Graphical Panels.
» Press the Send Ping Button Again.

A new ping value is displayed and the sequence number increments. Notice that the ping times
are generally longer here than they were in the previous lab. This makes sense, because it
takes more time for an Echo Request to travel from the PC through the RAD-Moon and to
EEVB Node B than it takes for a message to move between Node A and Node B of the board.
Part 3.5D Restore EEVB-Only Configuration
We’re done with this lab, so let’s restore our normal hardware configuration.

» Go Offline.
Disconnect USB Cable from RAD-Moon.
Disconnect BroadR-Reach Cable from RAD-Moon.

Connect BroadR-Reach Cable to EEVB Node A.
Disconnect Ethernet Cable from RAD-Moon and PC or Hub.

vV v vvyyYy

Reconnect Ethernet Cable to PC Ethernet Port: If you disconnected your main
network connection for this lab, be sure to restore it.

v

Select Ethernet EVB in Ethernet Interfaces List.

Version 1.0 - August 3, 2015 133 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.6 Simulating a Routing Problem with ICMP Time Exceeded
Messages

In the introduction to ICMP at the start of this section of the Lab Manual, we mentioned that
there were two classes of messages defined within the protocol. The Echo Request and Echo
Reply messages we’ve been using over the last few labs are examples of ICMP informational
messages, which were created specifically for network tools such as ping. The others are
ICMP error messages. We've seen that these can also be employed in a utility role, when we
examined how they are used to implement traceroute. However, their primary function, as their
name implies, is to allow the communication of error conditions among nodes.

In this lab, we will simulate an example of a network with a problem condition that causes
ICMP Time Exceeded messages to be generated. Specifically, we’'ll be using the same
subtype of this message used in traceroute—messages created when the Time To Live field of
a message drops to 0 while it is in the process of being routed.

Recall that routers are devices that connect together different networks into internetworks,
passing messages intended for distant hosts from one network to the next until they reach their
intended destinations. Most computer users are familiar with the small routers used to move
traffic over a home or office Internet connection; there are also much larger ones that route
millions of packets per second to implement the Internet itself.

To demonstrate ICMP error messages we will set up a mock routed network consisting of three
devices: EEVB Node A, EEVB Node B and a PC running Vehicle Spy 3. Node A will regularly
generate IPv4 messages that are ultimately intended for the PC. Node B will act as the
“router”, taking the datagrams that Node A sends, repackaging their data, and sending a new
datagram containing the data to the PC. We'll use the pushbutton on Node A to select between
two different Time To Live values in the transmitted messages, allowing us to alter the behavior
of the “router” dynamically.

Bear in mind that no actual routing is taking place here, because all of these devices are on
the same local network, meaning that the PC can see Node A's messages without the need for
Node B to “route” anything. However, as we have done in other cases, we're going to pretend
that routing is taking place for the sake of illustration.

Part 3.6A Set Up EEVB Node A to Send IPv4 Messages with Variable Time To Live
Values

Naturally, we will start with Node A, setting it up to send IPv4 data packets. We've created a
setup file for you, which we’ll briefly examine before downloading it to the EEVB.

» Load 3.6 Message Transmit.
» Switch to Messages Editor.

This node only sends data, so there are no receive messages defined. On the transmit side
there is an IPv4 message defined called Lab 3.6 Data Packet,; this is a “raw” IPv4 message
because it doesn’t contain an encapsulated higher-layer protocol message such as one from

Version 1.0 - August 3, 2015 134 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

UDP or TCP. Instead we have two custom fields: Lab 3.6 Packet Number, which is simply a
sequential counter to allow us to distinguish among adjacent packets, and Lab 3.6 Data Field,
which can carry an arbitrary 16-bit data value.

» Switch to Application Signals.

The application signal Packet Counter is the means by which the function block script keeps
track of what number to put in the next message it sends.

» Switch to Function Blocks.

This script (Figure 98) first fills in Lab 3.6 Data Field; we could have chosen anything to put
here, but we decided just to use the value of the Node A potentiometer, which you may recall
reads as a value of 0 to 4,095. You can thus alter what data is sent in each packet by changing
the position of the potentiometer dial, and the variations in sampling the potentiometer mean
that the data value will also fluctuate over time naturally. The script then increments the Packet
Counter application signal and stores that value in the Packet Number message field. The
script tests the value of the Node A pushbutton; if it's held down, the Time To Live value of the
IPv4 message is set to 1, and otherwise it is made 2. The packet is then transmitted, and a
delay of 5 seconds imposed.

Step | Description Value Comment
{Lab 3.6 Data Field (valug) :outd-sig22-0} =

. ; . |

1 Set Value JAnalog Input 1 (Value) :neo0-ai0-0-ndex()s !/ Set Data field to be equal to potentiometer input (value from 0 to 4095).
{Packet Counter :sigl-index(0)} = {Packet

2 Set Value Counter :sig0-ndex(0)} + 1 /I Increment packet counter,

3 Set Value ﬁLab 3.6 Packet NL":“'.JEF _[\.n'alue) routd-sig21-0} /f Set IPv4 message packet number to current counter value so packets are uniguely numbered.
= {Packet Counter :sigl-index{0)}

4 E‘ If {Switch 1 (Value) :neo0-swi-0-ndex{0)} /I If switch is pressed down, set TTL to 1, otherwise 2,

5 Set Value {Time To Live (Value) ;out0-sig13-0} = 1

& [#Eke

7 Set Value {Time To Live {Value) :outl-sigi3-0} =2

g [ZEndIf

9 B Transmit Lab 3.6 Data Packet

10 &%) Wait For = 5000 ms

Figure 98: Message Transmit Function Block Steps.

» Download CoreMini to Node A.

Part 3.6B Set Up EEVB Node B as “Router” of IPv4 Messages Coming from Node A

Now let’s take a look at the setup and program logic for our simulated “router” that will run on
EEVB Node B.

» Load 3.6 Message Routing.
» Switch to Messages Editor.

There is one receive message definition, for Lab 3.6 Data Packet, the message sent regularly
by Node A. There are two transmit messages. The first, Lab 3.6 Data Packet Routed, has
basically the same definition as Lab 3.6 Data Packet but with different field names; this is the
message that Node B sends when it successfully “routes” a packet from Node A to the PC. The

Version 1.0 - August 3, 2015 135 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 3.6 ICMP Time Exceeded message is sent if this fails due to the Time To Live field in Lab
3.6 Data Packet hitting zero.

» Switch to Function Blocks.

The script (Figure 99) is triggered by receipt of a Lab 3.6 Data Packet message. When one
arrives, we check its Time To Live field. If it's 1, then this “routing” operation would reduce it
to 0, so the message has expired; we send a Lab 3.6 ICMP Time Exceeded message back
to Node A. In this message we include the number of the packet that was dropped. (Note that
in real ICMP the first portion of the full IPv4 message would be included in this message, but
we’ve skipped this step to reduce complexity.)

If the Time To Live field is 2 or greater, we are going to “route” the message. We copy Lab

3.6 Packet Number and Lab 3.6 Data Field from the received message to their corresponding
areas in the new message. We also copy the Time To Live field, decreasing it by one. Then we
send the Lab 3.6 Data Packet Routed message.

Step |Description Value Comment
1 E Wait Until {Lab 3.6 Data Packet (Present) :in2-0} // Wait for incoming IPv4 data packet from Node A.
2 Set Value {Lab 3.6 Data Packet (Present) :in2-0} =0 // Clear flag to avoid extra triggering.
3 E If {Time To Live (Value) :in2-sig13-0} = 1 S/ IFTTL field is 1, decrementing it would make it 0, so drop packet and send Time Exceeded message.

{Lab 3.6 Expired Packet Number (Value) :out2-sig21-0} =

4 Set Value iLab 3.6 Packet Number (Value) in2-sig21-0} /I Spedfy the number of the padket that expired.
5 B Transmit Lab 3.6 ICMP Time Exceeded // Send Time Exceeded message.
& [hEse J{ Otherwise, "forward” the message.

{Lab 3.6 Packet Number Routed (Value) :outl-sig19-0} =
{Lab 3.6 Packet Number {Value) :in2-sig21-0}

{Lab 3.6 Data Field Routed (Value) :outi-sig20-0} = {Lab
3.6 Data Field {Value) :in2-sig22-0}

{Time To Live (Value) :outi-sig13-0} = {Time To Live
(valug) rin2-sig13-0} - 1

10 E_, Transmit Lab 3.6 Data Packet Routed
11 [EEndIf

7 Set Value /I Copy packet number to routed message.

8 Set Value /f Copy data field.

9 Set Value /f Set Time To Live to 1less than that of the incoming message.

Figure 99: Message Routing Function Block Steps.

» Send CoreMini to Node B.

Part 3.6C Set Up Vehicle Spy 3 on the PC to Monitor Message Traffic

We’'ll now load a simple setup that has all of the message definitions described above, so we
can watch the traffic sent by the EEVB nodes. Again, all devices are on the same network,
enabling us to “spy” on traffic that Node A is sending to Node B and vice-versa, as we always
do. In a true routing situation, Node A and the PC would be on different networks and this
would not be possible, but again, this is just a simulation.

» Load Lab 3.6 Message Monitor.
» Switch to Messages View.
» Set Filter for Lab 3.6 Messages: Enter Lab 3.6 in the Description column filter box.

» Enter Scroll Mode (If Necessary).

Version 1.0 - August 3, 2015 136 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Go Online.

Every five seconds you should see a Lab 3.6 Data Packet message going from 10.0.0.1 to
10.0.0.2, followed immediately by a Lab 3.6 Data Packet Routed message sent from 10.0.0.2
to 10.0.0.3 (Figure 100). This represents the normal “routing” of our message by Node B.

Line | Time Tx |Er |Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAM |Len

Filter Lab 3.6

%o 1 Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 &0
o%o 2 1,299 ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 &0
ohn 3 50003445 Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 &0
oo 4 1.331ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 60
oo 5 5.000320 s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 &0
o%n = 1,308 ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 60

Figure 100: Data Packet Transmission and “Routed” Retransmission.

» Switch to Signal List.

We've created a signal list to more easily allow us to examine some of the more important
fields (signals) in our messages (Figure 101). The first three are from Lab 3.6 Data Packet, and
the last three from Lab 3.6 Data Packet Routed.

Signal Value Update
2%, Time To Live (Value) 2
5% Lab 3.6 Data Field (Value) 2352 |
E:ﬁ: Lab 3.6 Packet Mumber (Value) 9
Af, Time To Live (Value) 1
Af, Lab 3.6 Data Field Routed (Value) 2352
A%, Lab 3.6 Packet Number Routed (Value) g

Figure 101: Selected Fields Data Packet and “Routed” Data Packet.

» Slowly Rotate the Node A Potentiometer.

You will see the Lab 3.6 Data Field value change as you move the potentiometer, and the Lab
3.6 Data Field Routed value will change to match it.

Notice also that the Lab 3.6 Packet Number and Lab 3.6 Packet Number Routed fields
increase by 1 with each message exchange. Also, the Time To Live value for Lab 3.6 Data
Packet (the first signal in our list) is 2, while it has been reduced to 1 for Lab 3.6 Data Packet
Routed (the fourth signal). Again, these are all as we expected.

» Switch to Messages View.
» Hold Down the Node A Pushbutton.

You will see that each Lab 3.6 Data Packet message is now being followed by a Lab 3.6 ICMP
Time Exceeded message (Figure 102). This continues as long as the pushbutton is held down.

Version 1.0 - August 3, 2015 137 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Line | Time Tx |Er |Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAN |Len

Filter Lab 3.6

%o 81 4.999650 s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPw4 60
%o 32 2,033 ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 a0
oo 83 4.999030s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 a0
oo a4 2.020 ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 60
oo 85 4.999599s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 60
oo 36 1.050 ms Lab 3.6 Data Packet Routed 10.0.0.2 10.0.0.3 IPv4 60
oo 87 5.000602s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 60
oo 33 1.043 ms Lab 3.6 ICMP Time Exceeded 10.0.0.2 10.0.0.1 IPv4 ICMPv4 &0
o' 39 5.000605s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPv4 &0
oo a0 1.053 ms Lab 3.6 ICMP Time Exceeded 10.0.0.2 10.0.0.1 IPvd ICMPv4 60
oo 91 5.000579s Lab 3.6 Data Packet 10.0.0.1 10.0.0.2 IPvd &0
oo 92 1.035 ms Lab 3.6 ICMP Time Exceeded 10.0.0.2 10.0.0.1 IPvd ICMPv4 &0

Figure 102: Data Packet and Simulated ICMP Time Exceeded Messages. When the Node A pushbutton is held down, the
Time To Live field value in Lab 3.6 Data Packet changes from 2 to 1. When Node B sees this, instead of “routing” the message
to the PC, it sends back a Lab 3.6 ICMP Time Exceeded message to Node A.

» Switch to Signal List.

Notice that the Time To Live value at the top (the one in the original Lab 3.6 Data Packet)
is now 1 rather than 2. (The other Time To Live value stays at 1 rather than 0 because it is
showing the previous value from the last Lab 3.6 Data Packet that was received before the
pushbutton was held down.)

» Release Node A Pushbutton.
The Lab 3.6 Data Packet Routed messages resume being shown.
» Go Offline.

Congratulations, you’ve completed Section 3 of the Intrepid Ethernet EVB Lab Manual!

Version 1.0 - August 3, 2015 138 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Section 4 TCP/IP User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) Data Exchanges

In this, the final section of the EEVB Lab Manual, we move up again in the TCP/IP protocol
stack to the Transport Layer, also known as layer 4 in the OS| Reference Model. The two
primary protocols found here are the User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP). UDP and TCP work in conjunction with the Internet Protocol to carry nearly all
Internet traffic.

In this section you’ll learn about these two “siblings”, analyze their behavior within Vehicle Spy,
and work with simulations using the protocols in the Ethernet EVB and Vehicle Spy 3. You'll
achieve these objectives:

e |Learn about UDP and TCP and how they work, how they differ, and why both are
important.

e Learn about ports and how their software-level addressing permits multiple processes to
function on a device.

e Capture and analyze UDP and TCP messages.
e Generate UDP messages and a TCP connection message exchange.

e Examine and run a UDP-based version of the Ethernet EVB Input Output example first
encountered in the EEVB User’s Guide.

e See an example of a custom application protocol based on UDP.

e Work with a complex simulation of the TCP connection establishment and termination
process.

As we have in the last few sections, we will start with a brief summary of the TCP and UDP
protocols for those who may not be familiar with them. If you want a more complete description
of these technologies, they are covered in Part IV of Intrepid’s book Automotive Ethernet - The
Definitive Guide, which is included in your Ethernet EVB package.

Why Two Transport Layer Protocols?

The Internet Protocol is the basis for the Internet and other TCP/IP networks, but it is not
sufficient by itself to implement an internetwork. IP is an unreliable, unacknowledged and
unmanaged protocol, so it doesn’t provide a way for a device sending data to ensure that

it was received, to detect errors in transmissions, or control the rate at which data is sent.
Without these capabilities built in at the lower levels, thousands of applications would be forced
to implement them, which would be tremendously inefficient.

It makes sense to implement these services at the Transport Layer so higher layers can make
use of them. However, not all applications need these functions, and in some cases using them
would actually be detrimental, due to the additional complexity and network bandwidth required

Version 1.0 - August 3, 2015 141 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

to provide them. For this reason, TCP/IP uses two different core Layer 4 protocols: TCP, which
implements these services for applications that require them, and UDP, which does not.

By means of analogy, TCP is a fully-loaded luxury performance sedan with a chauffeur,
roadside service and GPS. It provides lots of frills and comfort, good performance, and
virtually guarantees you will get where you need to go without any problems. In contrast, UDP
is a stripped-down race car; the only goal is speed, and while you probably will get to your
destination quickly, you might also have a breakdown in the middle of the road somewhere.

An Overview of UDP

Our race car, UDP only really performs two complementary tasks. When transmitting, it takes
data from higher-layer protocols, prefixes a header to that data, and sends it the IP layer.
When receiving, it takes data passed to it by IP, performs a simple error check on the UDP
header data, then removes that header and sends the data to the application. As mentioned
above, UDP provides no service guarantees; it simply packages the data and sends it.

The header format for UDP, which can be found in Figure 103, has only four fields. The Source
Port and Destination Port fields are used for process-level addressing, which we’ll discuss in

a moment. The Length field specifies how many bytes are in the message, and Checksum
provides limited error-detection capabilities for the UDP header and also some of the IP header
fields as well. It does not allow errors in the actual data to be detected.

0 4 8 12 16 20 24 28 32
| | | | | |
Source Port Destination Port
Length Checksum
—— Data =

Figure 103: UDP Header Format.

UDP is usually used in applications where some or all of the following are true:
e Loss of a message won’t unduly affect operation of the protocol.

e Receiving a retransmission of a lost message wouldn’t be useful (usually because the
messages are time-sensitive).

e Simplicity is essential.

e Speed of transmission is of paramount importance.

Version 1.0 - August 3, 2015 142 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

UDP is also used whenever multicasting is required, because TCP only supports unicast
communications between two devices.

An Overview of TCP

TCP is a full-featured Transport Layer protocol that provides all the functions needed by a
typical application for the reliable transportation of data across an arbitrary internetwork.

It is used by most high-level protocols so that they can focus on the application they are
implementing, without having to worry about being sure that the data they send will be correctly
received.

TCP is a complex protocol, so we can only describe it in broad strokes. Here is a brief
overview of its main operational characteristics.

Connection-Based Operation

TCP is a connection-oriented protocol, which means that all communication takes place in the
context of a logical connection between a pair of device. There are three basic phases:

e Connection Establishment: A device that wants to communicate contacts another
device using a special message type. The two establish a logical connection by
exchanging configuration messages.

e Connection Use: The connection can be used to send data bidirectionally for an
arbitrary amount of time (milliseconds to hours, or even longer in some cases).

e Connection Termination: When either side no longer wants to talk to the other,
another exchange of special messages occurs to tear down the connection while
ensuring that no pending data transmissions are lost.

TCP is designed so that multiple connections can be supported simultaneously by any device.

We will see an example of a real TCP connection in Lab 4.1, and work with a simulation of the
TCP connection establishment and termination processes in Lab 4.4.

Byte-Oriented Data Transfer

TCP/IP protocols like IP and UDP are designed to send data in discrete chunks, which we call
messages or packets. An application protocol using one of these will generally send the data in
blocks, so they can be packaged and transmitted whole.

TCP is unique because it is said to be stream-oriented rather than message-oriented. This
means that an application protocol using TCP can simply send data as a stream of bytes,
without having to break it into discrete pieces. TCP takes care of managing the bytestream,
packaging and then transmitting (and if necessary retransmitting) each byte in messages
based on what is most efficient for the needs of the connection at any given time.

Version 1.0 - August 3, 2015 143 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

TCP data is sent in messages that are commonly called segments. The TCP header
(Figure 104) is much longer than the UDP header because of all of the additional services that
TCP provides. We will discuss many of these fields when we look at TCP messages in Lab 4.1.

0 4 EIS 1|2 16 2|0 2|4 2|8 32

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Offset Reserved Control Bits Window
Checksun Urgent Pointer
Option-Kind #1 /Option-Length #1 | Option-Data #1

.
[
' [
= [: LY T
[v
.) [
......................... J jocoooocoooooooooooosooooopoooot POOODO00000050500000000500005000000000000000500
] ' [
S ' [
!

Option-Kind #N /i Option-Length #N ; ER =
pessssmssosesesesasseey Alosososesasasassesasssasad ! Option-Data #N Sttty
T Padding

— Data =
0 3 6
Acknow |- Synch-
Urgent Bit | edgment Push Bit | Reset Bit ror}nlize Bit Finish Bit
(URG) Bit (PSH) (RST) (SYN) (FIN)
(ACK)

Figure 104: TCP Header Format.

Reliable Operation and Flow Control

TCP includes an extensive set of mechanisms to ensure that data gets from source to desti-
nation reliably and consistently. The key to its operation in this regard is a special sliding
window acknowledgment system, which allows each device to keep track of which bytes of
data have been sent and to confirm receipt of data received from its partner in the connection.
Unacknowledged data is eventually retransmitted automatically, and the parameters of the
system can be adjusted to suit the needs of both the devices and the connection.

This same system also provides buffering and flow control capabilities between devices, to
handle uneven data delivery rates, bottlenecks and other problems.

Version 1.0 - August 3, 2015 144 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Process-Level Addressing: TCP and UDP Ports

We’ve already seen how IP addresses are used to uniquely identify devices on an internetwork
(including the Internet). In modern networks, though, devices are complex: they are usually
using many different applications and protocols. For example, your home computer may be
running a web browser, an email client, a chat client and many other types of network software.
Even considering just your web browser, it probably has multiple tabs open with data being
sent to and received from many web servers simultaneously.

We need an additional level of addressing to keep all of these different communications
separate from each other, while allowing all of them to share network links. This is
accomplished in TCP/IP at the Transport Layer using TCP and UDP ports, which are 16-bit
numbers that uniquely identify a particular software process on a device. If an IP address
can be likened to a street address, then a port number is sort of like the name of a person
who resides at that address. Much as the name allows letters and packages sent to a home
or business to ultimately be directed to the correct actual recipient, the port number does the
same with UDP and TCP messages sent to an IP address.

Another important function of ports is that they solve the problem of how a client knows
which software process on a server should receive its request. A central authority maintains
a database of well-known ports for common protocols; for example, the Hypertext Transfer
Protocol (HTTP) used on the World Wide Web has a well-known port number of 80. When a
client wants to send a request to a web server, it transmits it to that server’s IP address with
a port number of 80. The client generates a random port number (from outside the reserved
range) and the server replies back to it as shown in Figure 105.

Request

Source | 177.41.72.6 | 3022 —
Destination | 41.199.222.3 | 80

% p Internet

Client Server
177.41.72.6 Response 41.199.222.3

<4— Source |41.199.222.3| 80
Destination| 177.41.72.6 | 3022

v

A

Figure 105: Client/Server Communication Using Port Numbers.

The combination of an IP address and a port number is called a socket. A pair of sockets,
as shown in the two hypothetical messages in Figure 105, uniquely identifies a particular
connection or exchange of data between two devices.

Version 1.0 - August 3, 2015 145 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 4.1 Analyzing UDP and TCP Messages and Exploring the TCP Column
Display

We'll continue the pattern established in earlier sections of the Lab Manual, starting out our
look at UDP and TCP with real traffic captured on a live Ethernet connection. We will explore
how to use filters to narrow down the large number of messages that can arrive using these
two protocols, and discuss the fields found in both message types. We’'ll also generate our own
UDP and TCP traffic using two common application-level protocols: the Domain Name System
(DNS) and Hypertext Transfer Protocol (HTTP).

In earlier labs where we’ve worked with live (non-simulated) TCP/IP data we have mentioned
the need for a real Ethernet network in order to see traffic, and recommended an Internet
connection. Here the Internet link is actually mandatory to duplicate our results, since this lab
works with real web servers and IP addresses.

Part4.1A Go Online and Work with Filtering UDP and TCP Messages

As we often do at the start of a new lab manual section, we’ll restart Vehicle Spy 3 to ensure
that any settings from previous labs have been cleared.

» Close Vehicle Spy 3.
» Start Vehicle Spy 3.

Let’s now select the Ethernet interface through which we connect to the Internet, and also load
our standard custom column setup so that Messages View is set to show Ethernet traffic.

» Select Internet Connection Ethernet Interface: Choose the Ethernet interface through
which you connect to the Internet. This will normally be the (non-EEVB) interface with
the highest packet rate.

» Load 1.1 Custom Column Setup.

Just as was the case with IP, finding UDP and TCP traffic is far from difficult: the vast majority
of messages on a conventional TCP/IP network use one or the other. Thus, we will see some
immediately as soon as we go online.

» Enter Scroll Mode (If Necessary).
» Go Online.

Also as was the case with IP, not only is it not difficult to find UDP/TCP messages, viewing
them is somewhat like trying to drink from a firehose. One option is to collect data for a while
and then go offline, but usually we will instead want to apply column filters; this will “sift” the
data and allow us to focus more finely on what we are interested in at a particular time.

To begin with, we can set a filter that will exclude any messages that are not UDP or TCP.

» Set UDP and TCP Protocol Filter: In the Protocaol column filter box, enter UDPTCP.

Version 1.0 - August 3, 2015 146 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Assuming that you are on an active Internet connection, your VSpy setup is still probably
scrolling madly, because messages using neither UDP nor TCP typically account for less than
5% of Internet traffic. Thus the “firehose” persists; we will need to narrow down further.

Let’'s go offline so we can see more easily the impact of future filter additions.
» Go Offline.

Before proceeding, let’s quickly look at the EtherType column in VSpy. Even though we didn'’t
enter a filter here asking to show only IP messages, that’s what you will almost certainly

see in every line. Recall that in Section 3 we mentioned that IP messages rarely appear by
themselves; they nearly always encapsulate a higher-layer protocol. Most of the time this is
either UDP or TCP. Thus, when you filter for UDP and TCP in the Protocol column, you will be
inherently selecting most of the IP traffic as well. This will be a mix of versions (IPv4 and IPv6)
but you can filter to show just one or the other, as we did in Lab 3.1.

Back to filtering. Obviously the first thing we can do is show only UDP or TCP; let’s choose
TCP in this case.

» Set Protocol Filter to TCP: Change the Protocol column filter to just TCP. You can also
select TCP from the drop-down box in the filter row for that column.

UDP messages are now suppressed, which will remove some portion of the total messages
being shown. However, you will probably still have quite a lot showing.

One common way of narrowing down what you are looking for is to use IP address filtering. For
example, many networks use the IP address range 192.168.x.x for local devices, including the
network we used in creating this manual. We can use this to quickly isolate all of the messages
either originating from, or coming into, the local network.

» Add Source Filter: Add the filter 192.168 to the Saurce column in the filter row.

Since we put this filter in the Source column, we will see requests coming from our local
network. It still leaves a lot of messages, but it's more manageable than before.

Many different applications “share” UDP and TCP to send their data, so a useful way of
narrowing traffic down further is to focus on a particular application layer protocol. For
example, suppose we want to see all messages sent from our local network using HTTPS, the
secure version of the Hypertext Transfer Protocol often used for accessing online banking and
other sensitive transactions online. These requests normally use TCP and are sent to port 443
on the destination server.

» Add Dst Port Filter: Add a Dst Port filter of 443.

We will now only see HTTPS requests from our local address (Figure 106). Naturally, we could
narrow things down even further by specifying the IP address of the remote server we are
interested in, a feature we’ll explore later in this lab.

Version 1.0 - August 3, 2015 147 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

1.1 Custom Column Setup.vs3 - Vehicle Spy -\ E‘M
File Setup Spy Metworks Measurement Embedded Tools Scripting and Automation Run Toels Help
[~ offiine PIatform:’(None) vl (&} Desktopl % pata -
w40 Messages Editor [52 | & Messages @” o
[Ssriter] [=-Add | [& sl | [TTpetais] ¥lExpand E] AT Time Abs Pause X Erase Find: L=
% XE B Line | Time Tx |Er | Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAM (L
i Filter 192,158 443 TCP
|=) oo Messages N
P 245 5.704ms Ethernet 192.168.1.11., 192,168, 1,116 59792 173.194.123.54 443 IPv4 TCP 1
Custom 1
e 245 4ps Ethernet 192.168.1.11.. 182.168. 1,116 59792 173.194.123.54 443 IPv4 TCP 1
Custom 2 "y 247 87.852ms Ethernet 192.168.1.11.. 192.168.1.116 53792 173.194.123.54 443 IPv4 TCP 5 .
Custom 3 ST 248 1.409191s Ethernet 192.168.1.11.. 192.168.1.116 53802 31.13.7L.1 443 Pv4 TCP 1 |
Custom 4 e 249 26 s Ethernet 192.168.1.11.. 192,168, 1.116 58802 31.13.71L.1 443 IPv4 TCP 1
B
Custom 5 e 250 40 ps Ethernet 192.168.1.11.. 192.168.1.116 58802 31.13.71L.1 443 IPv4 TCP 1
ot
Custom & p 251 208 Ethernet 192,168,1.11.. 192,168, 1116 53802 3L.13.7L1 443 IPv4 TCP 1
e 252 2us Ethernet 192,168,111, 192,168, 1.116 53802 31.13.7L.1 443 IPv4 TCP 1
= k3l Data Types
¥ 253 20.464ms Ethernet 192,168.1.11.. 192,168, 1.116 58802 31.13.71L.1 443 IPv4 TCP 5
Metwork
"¥9 254 60.038ms Ethernet 192.168.1.11.. 192.168.1.116 59802 31.13.71.1 443 IPva TCP s,
@ Transmit ke 255 347.835ms Ethernet 192.168.1.11.. 192,168,116 59809 134.25.108.72 443 IPv4 TCP 5
(@) Errors N "y 256 217.147ms Ethernet 192.168.1.11.. 192.168. 1,116 59805 134.25.108.72 443 IPv4 TCP 5
Changing < [3 *
Mo Match o = "
Details for "Ethernet 192.168.1.116 to 31.13.71.1
Completed Mz]
P g Message on Ethernet : 1 yame Value 00 90 23 CD D2 26 EC F4 &
=) s Networks B Ethernet, Src: EC:F4:BB: BB 6E 01 3C 08 00 45 00 .n.<..ELJ
i .
neoV & Internet Protacol Version 04 74 56 23 40 00 80 06 .tVHE.. ‘
Transmission Control Pro
Ethernet 78 36 CO A8 01 74 1F 0D x6...t.
47 01 ES 9 01 BB F6 10 G......
8D OB 7A 81 E3 EF 50 18 ..z...P
40 9C E7 DC 00 00 17 03 B......
03 04 47 00 00 00 00 00 ..G.... ’
00 00 75 FC CE 40 2C BD ..u..@, 7
A | LN 1] Hi| 4] (1]} 3
Details ‘ RF—"\’E"’S'”9|
|
= | o0 w7 iR ‘ Columns [Ethernet v|[Setup ...] Review Buffer... -
I] * (edit) * [(edit) * [(edit) + (edit) s (edit) * (edit) No Bus Errors

Figure 106: Filtering for Local HTTPS Requests in Messages View. In this example we have specified a Source filter value
of 192.168 and a Dst Port value of 443, which means we will see only HTTPS requests from the local network. As it happens,
only one device is active on the network, with an IP address of 192.168.1.116. It has made a number of requests to several IP
addresses, such as 31.13.71.1 (which belongs to Facebook.)

Part4.1B Analyze a UDP Message

We’re going to look at both UDP and TCP messages in detail in this lab. Since UDP messages
are (much) smaller and simpler than TCP ones, it makes sense to start with them.

You should have a good number of UDP messages already captured in VSpy from the
previous part of the lab, though the filters we entered have caused them to all be hidden. Let’s
fix that now.

» Set IPv4 EtherType Filter: Enter IPv4 as an EtherType column filter.
» Set UDP Protocol Filter: Change the Protocal column filter to UDP.
» Clear Other Filters: Erase the filters previously entered in other columns.

We want Details View for this part of the lab, so make sure it is turned on, and then select a
UDP message.

Version 1.0 - August 3, 2015 148 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Enable Details View (If Necessary).
» Select UDP Message: Any one will do.

You should see four lines in the information pane on the left side of Details View, the first three
of which will be Message on Ethernet (the general entry VSpy uses for Automotive Ethernet
messages) followed by Ethernet and Internet Protocol Version 4, which are the lower-level
encapsulations of our UDP message. The fourth line will say User Datagram Protocol and will
list the source and destination ports used by the particular message you selected.

» Select the User Datagram Protocol Header.

You will see 8 bytes highlighted in the byte display on the right, corresponding to the bytes in
the UDP header.

» Expand the UDP Message Header: Click the [+| button to the left of
User Datagram Frotocol in the Details View.

Your Details View window should now look something like what is shown in Figure 107.

Details for "Ethernet 24.124.87.15 to 192.168.1.116"

Message on Ethernet : 60 bytes captured Name Value |[EC F4 BB 6E 01 3C 00 20 ...n.<..
Ethernet, Src: WesternD_CD:D2:26 (00:90:A¢ L9 CD D2 26 08 00 45 20 ...&..E
Internet Protocol Version 4, Src: 24.124.87.11

- 00 1F €7 &2 00 00 78 11 ..gb..x.
= User Datagram Protocol, Src port: 34507, Dst
S . L9 A4 18 T7C 57 OF CO A8 ...|W...
ource port: 34507
Destination port: 65123 01 T4 E ﬁ E -t
Length: 11 iy s DD 46 7D 00 0O 00 F}...

Checksum: OxEEB9 00 00 00 00 00 00 00 00 ...vusn.
00 00 00 00

[} [[} b

Figure 107: UDP Message in Details View.

In the introduction to this section we described UDP as something of a “stripped down”
protocol, and you can see exactly how “lean and mean” it is by how few fields are present in
the header:

e Source Port: Identifies the process that created the UDP message on the originating
device.

¢ Destination Port: Specifies the process intended to receive the message on the
destination device.

¢ Length: The length of the complete UDP message, including the 8-byte header and the
data that follows.

e Checksum: A 16-bit checksum calculated based on the UDP header and also some of
the fields in the encapsulating IP header. It is recalculated by the recipient and checked
against the original, allowing simple transmission errors to be detected.

And that’s pretty much it for UDP message fields!

Version 1.0 - August 3, 2015 149 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part4.1C Generate and Analyze UDP DNS Messages

Filtering a standard Internet connection, as we did above, makes it easy to capture and
examine UDP messages. However, UDP is used by many different protocols, and the
messages from them will be mixed together in the traffic stream. If we want to isolate the UDP
datagrams created by a particular higher-level protocol, we can use port number filters, as we
did before. Even here, though, we may have many different message exchanges happening
concurrently; in our example we filtered for a Destination Port value of 443, but we could have
several web browser tabs or windows accessing different servers on that port at the same
time. You can actually see this in Figure 106, which shows at least three different HTTPS
exchanges occurring simultaneously.

The best way to get a really good feel for how UDP works is to move from passively viewing
the messages created by other programs to actively generating our own. This way we will
know exactly what we are looking for, and can easily tie the messages that we see to the
actions that create them.

The example we will use deals with an important problem that is solved so seamlessly on

the Internet that most people never even think about it. All communication between hosts on
the Internet is oriented around the use of IP addresses, those strings of numbers that identify
source and destination devices; we’ve worked with them a few times already. However, people
don’t like having to remember lots of numbers; they prefer working with names. If you want

to get to the Intrepid website, for example, it's much more convenient to remember to type
intrepidcs.com into a browser tab than it is to remember 54.225.225.147. Yet the number is
what’s needed to actually make the request.

A mechanism is required to convert the site name into its corresponding IP address, and this is
provided in the form of the TCP/IP Domain Name System. DNS servers maintain databases of
domain names (like intrepidcs.com) and IP addresses (like 54.225.225.147), allowing one to
be converted to the other and vice-versa. If you’re thinking that this process sounds similar to
the address translation function performed by ARP, then you're quite right. Domain names can
be considered a type of address, and so DNS performs a translation service similar to ARP,
though it works at a different level, and in a very different way.

DNS is a complex system with many different components, and uses both TCP and UDP. The
name conversion function described above uses UDP, sending requests containing names to
be converted, and receiving back replies containing IP addresses.

You should currently have Vehicle Spy 3 offline, with Messages View set to filter for UDP
messages. We’ll now use a web browser to generate a DNS request and look at it and the
resulting reply.

» Load Web Browser: Start up any web browser.

» Enter Test Page Name: Enter the following web address into your browser, but do not
yet hit Enter to load it: http://www.intrepidcs.com/ae/eevb/test.txt.

Version 1.0 - August 3, 2015 150 © 2015 Intrepid Control Systems, Inc.

http://www.intrepidcs.com/ae/eevb/test.txt

Ethernet EVB Lab Manual

Try to perform the following steps as quickly as possible, to make it easier to spot the data we
are interested in:

» Go Online: Go online within Vehicle Spy 3.
» Load Test Page: Press Enter to load the page mentioned above.
» Go Offline.

DNS requests are sent to port 53, so we can find the DNS request for intrepidcs.com by
entering that value as a filter. After it appears, select the message and examine it.

» Enter Dst Port Filter for DNS: Enter 53 as a Dst Part filter.

In theory you should see only one entry, corresponding to the request we sent to Intrepid’s
site. However, it is possible you will see more than this if other processes are active on your
computer. In this case click around until you find the right one.

» Select the Intrepid DNS Request Message: Select the UDP message corresponding
to the request we sent to www.intrepidcs.com. You will be able to see the name clearly
in the byte display on the right side in Details View, as shown in Figure 108.

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ EIM
File Setup Spy Metworks Measurement Embedded Toels Scripting and Automation Run Tools Help
[~ offline P\atforrn:’(l\lone) '] (& Desktop 1 [% Data |~
oa Messages Editor [22 | @ Messages @” i
e (s)| | b Toons (5 [@rimess & ro Fins oes
% x B Line |Time Tx |Er |Description Source Src Port | Destination Dst Port | EtherType |Protocol | VLAM | Len
i Filter 53 Pv4 uop
=l oo Messages
"‘;"" 1 Ethernet 192.168.1.11., 192,.168.1.116 64170 192.168.1.1 33 Pv4 UDP 78
Custom 1
Custom 2 I
.
Custom 3
Custom 4
Custom 5
Custom &
(= 3l Data Types
Network
3 Transmit
(@) Errors 1 [3
<
Changi -
e Details for "Ethernct 192.168.1.116 to 192.168.1.1"
Mo Match
ora Message on Ethernet : 78 bytes captured Name Value |00 20 22 CD D2 26 EC F4 &..
Completed Msg Ethernet, Src: EC:F‘%:EB:EE:Dl:BC, Dest: Wester| BEE 6T 01 3C 08 00 45 00 .n.<..E.
B?:Networks D Internet Protocol Version 4, Src: 192.168.1.116, 00 40 62 26 00 00 20 11 .@hc....
8 7 g H....t..
neoVl Source port: 64170 4E C1 CO ; 01 74 CO A " t
Ethernet Destination port: 53 01 01 22 E .
Length:44 ge! 1C O 01 00 00 01 TP
Checksum: 0xE571 00 00 00 00 00 00 03 77 W
77 77 OR 6% 6E 74 T2 653 ww.intre
70 69 &4 63 T3 03 63 &F pidcs.co
eD 00 00 01 00 01 Mevons
| v« am r
Details |Reversing|
b ‘ CECEE L) | Columns [Ethernet v|[Setup ...] Review Buffer... |
o ¢ (edit) + (edit) * (edit) + (adit) + (adit) * (edit) No Bus Errors

Figure 108: DNS Request in Messages View. Note that in this example the Src Port value is 64170; this will be the Dst Port
value for the reply to this request. You can also see www.intrepidcs.com in the message, the name we are translating.

Version 1.0 - August 3, 2015 151 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Now, make a note of the Src Port field value for this message, which is 64170 for the example
shown in Figure 108. In most TCP/IP protocols, when a request is sent from a particular source
port, the reply is sent back to that port. We can use this to quickly find the matching reply to the
request we sent.

» Change Dst Port Filter: Change the value of this filter to match the Src Port of the
request we just looked at. So again, in the example above we would enter 64170.

» Click the DNS Reply Message: A single UDP message should now appear; select it.

If you examine the byte display of this message you will again see the string www.intrepidcs.
com in it. Now look at the last 4 bytes in the message: you should see the hex values 36 E1 E1
93; converted to decimal, these are 54 225 225 147, the IP address of the Intrepid web server.

» Remove Dst Port Filter.

You should now see something similar to Figure 109, though you may have many more
messages, depending on what was running on your machine during this exercise. Removing
the port filter allows us to see the full exchange, with the DNS request (line 3) and reply (line
4) adjacent to each other. In this case, it took about 29 ms for the request to be received and
processed, and the reply sent back.

1.1 Custom Column Setup.vs3 - Vehicle Spy I.‘:' =) ﬁ
File Setup Spy Netwerks Measurement Embedded Tools Scripting and Autemation Run Tools Help
[H - offline PIatfarm:[(Nonej v] (& Deskiop [% pata ~
w0 Messages Edior [E2] @ Messages IE” i
[™riter | [==Add | [G seroll | [T petails | [¥]expand E] &T Time Abs Pause Find: | Des |
% x [} ‘Line |'ﬁme |Tx |Er |Desn’iph’nn ‘Snurce ‘Src Pnrt|Deshnaﬁnn ‘Dst Pnrt|EH‘|erType‘Prntﬂcnl |!1'LAN Len
. Flter | | [11 ‘ | ‘ [Pea Juoe |
=) *aMessages N
“‘-}"’ 1 Ethernet 192,168, 1, 14., 192,168.1,145 61370 239.255,255.250 1800 IPv4 UDP 139
Custom 1
“‘-}'“ 2 5.683ms Ethernet 192.168.1,11,, 192,168.1.116 57684 65.55.223.30 40025 IPv4 uppP 190
Custom 2 "0 3 197.406ms Ethernet 192.168.1,11., 192.168.1.116 64170 192.168.1.1 53 IPv4 DR 78
Custom 3 "% 4 23.392ms Ethernet 192,168.1,1t,,192.168.1.1 53 192,168, 1,116 64170 IPv4 uop 94
Custom 4 “‘-}'“ 5 373.580 ms Ethernet 192,168.1, 1., 192,168.1.1 35411 255.255.255.255 7436 IPv4 uppP 215
Custom 5
Custom &
= E§ Data Types
Metwork: =
] ' .
3 Transmit
n
@ Erors Details for "Ethernet 192.168.1.1 to 192.168.1.116'
<
Changing Message on Ethernet : 94 bytes captured Hame Value |EC F4 BE 6E 01 3C 00 20 ...m.<.. | *
Ethernet, Src: WesternD_CD:D2:26 (00:90:A9:C 25 CD D2 26 DF 00 45 00 . .E
No Match ! : ...&..E.
Internet Protocol Version 4, Src: 192.168.1.1, De 00 S50 00 00 40 00 40 11 .P..E.8.
Completed Msg = User Datagram Protocol, Src port: 53, Dst port: € 56 D7 CO AS 01 01 CO &S
Source port: 53 - ’ - oo
=) 7 Networks i Destination port: 64170 01 74 00 35 FA AR 00 3C .T.5...<
neovl Length: 60 8B C4 1C OA B1 80 00 01
Ethernet Checksum: 0x8BC4 00 01 00 Q0 00 00 03 77 w
77 77 OR €9 6E 74 72 65 ww.intre
70 69 €4 €3 73 03 63 eF pidc=.co
€D 00 00 01 00 01 CO OC mMm.uvsans
00 01 00 01 00 00 00 B2uuw
R oo os R B -
4 | m rfa] 1}]
Details |RE”VE‘"S'”9‘
= | o o ou | Columns[Ethemet ~| setup.. | ReviewBuffer... ﬁ
i3 ¢ (edit) + (edit) + (edit) ¢ (edit) + (edit) + (edit) No Bus Errors

Figure 109: DNS Message Exchange. Line 3 shows the DNS request and line 4 the response. You can see that the Src
Port for the request became the Dst Port for the reply. The last four bytes, which we manually highlighted before taking the
screenshot, contain the IP address of www.intrepidcs.com.

Version 1.0 - August 3, 2015 152 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Clear Column Filters: Remove all column filters that are currently present within
Messages View.
Part4.1D Analyze a TCP Message

Let’s now turn our attention to TCP messages. We’'ll begin again by simply selecting one and
looking at its constituent fields.

You should have a number of TCP messages already in the Vehicle Spy 3 buffer. If you do not,
go online for a few seconds and that should be enough to capture a few.

» Set IPv4 EtherType Filter: Enter IPv4 as the EtherType column filter.
» Set UDP Protocol Filter: Enter the Protocol column filter TCP.
» Select Any TCP Message.

As with the UDP message, we have four lines in the information pane, and again the first
three are Message on Ethernet, Ethernet and Internet Protocol Version 4. The fourth line
will now say Transmission Control Protocol; as was the case with UDP, this line will show the
message’s source and destination ports.

» Select the Transmission Control Protocol Header.

The TCP header is much longer than the UDP one, so this time you’ll see 20 bytes highlighted
in the byte display.

» Expand the TCP Message Header: Click the [+] button to the left of
Transmission Control Protocol in the Details View.

Like the IPv4 header, the one for TCP has a special field dedicated to holding flags, which we
should also expand so we can see them:

» Expand the IPv4 Flags Field: Click the [*] button to the left of Flags in the Details View
area.

On a small screen you will probably find that there is insufficient space to see the entire TCP
message headers, especially with the Flags field opened up. If so, increase the size of Details
View so you can see all of the fields properly.

» Expand Details View (If Necessary).

Your Vehicle Spy 3 window should now appear similar to that shown in Figure 110.

Version 1.0 - August 3, 2015 153 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

1.1 Custom Column Setup.vs3 - Vehicle Spy ‘ [E=EERs
File Setup Spy Netwerks Measurement Embedded Tools Scripting and Autemation Run Tools Help
[~ offline PIatform:[(None) v] (& Deskiop % pata ~
oo Messages Editor [22| @ Messages @| in
[™ Filter J [ova Add] [2 Scrall J [" Details] |¥| Expand @ Pause Find: E - .

% x ‘Line |'ﬁme |Tx |Er |Desn’iph’nn ‘Snurce ‘Src Pnrt|Deshnaﬁnn ‘Dst Pnrt|EH‘|erType‘Prntﬂcnl |!1'LAN 1
h Flter |] | ‘ [pes [ree
=) oo Messages
“‘-}"’ 100 1,506 ms Ethernet 216.58,219.... 216,58.219.229 443 192.168.1.116 61318 IPv4 TCP 3
Custom 1
“‘.\i"" 101 2ps Ethernet 216.58.219.... 216.58.219.229 443 192.168.1.116 61318 IPv4 TCP 1
Custom 2 e 102 14ps Ethernet 192.168.1.11.. 192.168.1.116 61318 216.58.219.229 443 [Pva TP 5 . |
Custom 3 “‘-}"’ 103 93ps Ethernet 192.168.1,11,, 192,168.1.116 61318 216.58.219.229 443 IPv4 TCP 1
Custom 4 | b
Custom 5 -
Details for "Ethernet 216.58.219.229 to 192.168.1.116"
Custom & _—
B Transmission Control Protocol, Src port: 443, Dst port: 61318 «||EC F4 BB 6E 01 3C 00 80 ...n.<..
Data Types .
=) L Source port: 443 19 CD D2 26 08 00 45 20 ...&..E
Network Destination port; 61318 00 56 20 4C 00 00 38 06 .V L..8.
X Sequence number: 2326421526 —
'&)Transmlt EB F9 DB 3L DB E5 CO A8 ...:....

Acknowledgement number: 443467601

(@) Errors Data Offset: 20 bytes nAEHEERR
Changing N = Flags: 0x18 (] G B 7= 150

o Nonce : False oa ol ole Wy 17 03 .
Mo Ma

Congestion Window Reduced (CWR) : False 03 00 29 00 00 00 00 00 .+.)eeen.
Completed Msg ECN-Echo : False

00 01 5F 79 1A 4C 74 34 .._y.Lt4
= Urgent : False A N =
) =g Networl = Acknowledgment : True =(||B0 EO && AD TA 5C RE 50 ..j.z\.P
eVl Push : True 60 4F 5D 89 FC 8E 76 26 ~0]...V&
Ethernet Reset : False 3D 65 41 E& 7B B5 25 49 =eh.{.3I
Syn : False €1 E2 3E 47 e~
Fin : False
Window size: 1653
Checksum: OxAEEA
Urgent pointer: 0 B
< Il] ¢
Details |RE"VE"S'”9‘
!
= | o o ou | Columns | Ethernet ~| setup... Review Buffer... -
o e (edit) * (adit) * (adit) e [adit) + (adit) + (edit) No Bus Errors

Figure 110: TCP Message Details.

Here’s a summarized description of TCP headers and what they are used for:

Source Port: |dentifies the process that created the TCP message on the sending
device.

Destination Port: Specifies the intended recipient process on the destination device.

Sequence Number: A numeric tag corresponding to the first byte of data in the
message.

Acknowledgement Number: Indicates the number of the data byte most recently
acknowledged as having been received from the other device in this TCP connection.

Data Offset: The size of the TCP header; this is stored internally in 32-bit increments;
Vehicle Spy 3 shows it as a total number of bytes, which is usually 20.

Flags: A set of nine status flags that control the operation of the protocol. The ones of
most interest to us are:

¢ Urgent: When set, indicates that part of the message contains data to be prioritized.

¢ Acknowledgment: Indicates that this message is acknowledging the receipt of data
from the other device.

Version 1.0 - August 3, 2015 154 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

e Push: Tells the other device to immediately send data to the receiving process
rather than buffering it.

e Reset: Used to reset a connection when a problem is detected.
e Syn (Synchronize): Used to initiate a connection.
e Fin (Finish): Used to begin the process that terminates a connection.

e Window Size: Tells the other device how much data the sending device is willing to
receive at one time.

e Checksum: A 16-bit checksum for transmission error protection.

e Urgent Pointer: Specifies where in the message urgent data can be found (when the
Urgent flag is set).

If you increased the size of Details View, you can restore it back to roughly its original size
now.

» Restore Details View Window Size (If Necessary).

Part 4.1E Using the TCP Column Display to Monitor a TCP Connection and Data
Exchange

Many of the header fields described above play an essential role in the implementation of
TCP’s connection management and reliable data transfer capabilities. A full explanation of
them requires understanding the protocol itself in detail; this is beyond the scope of this Lab
Manual. However, we can learn a fair bit about these fields and how they are used simply by
observing them in action. To do this, we will now set up a simple scenario that will let us see
how a TCP connection is created, used and then terminated.

' Note: We will also learn more about how TCP connections work
inLab 4.4, where we will simulate the logic involved in connection
establishment and termination using Vehicle Spy and the EEVB.

VSpy includes a tool that will make it easier to monitor these messages exchanges: a
Messages View column set tailored specifically to TCP. We should still have some TCP
messages in the buffer, so let’s turn on this column set and see how it looks.

» Switch to TCP Column Set: Find the Columns drop-down box near the bottom of
Messages View and switch it from Ethernet to TCP.

This set includes four TCP-specific columns, which are located to the right of the Len column.
If you have VSpy currently set to a relatively small window size, it will be beneficial to expand
it for the purposes of this part of the lab, if that’s possible. Otherwise, you may wish to shrink

Version 1.0 - August 3, 2015 155 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

some of the other columns, such as Description, so you can see the special columns. The
Flags column is especially important, so be sure you can see it easily.

Figure 111 shows an example of the Messages View with the TCP column set applied, with

the window size and column widths adjusted to show the special TCP fields. This configuration
has been saved as 4.7 TCP Column Setup and included in the special zip file containing EEVB
setups, so you should find it in the | My setups| tab of the Logon Screen.

4,1 TCP Column Setup.vs3 - Vehicle Spy \ - [
File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help
[M ~ offline PIat‘fcrm:[(None] '] (&} Desktop 1 X pata -
048 Messages Editor [52 | @ Messages (B3] @
[Filter | [==Add | [& seon | [Tlpetails | [exand @ &T Time Abs Paus Find: | Description - - .
o B Count | Time Tx |Er |4 Desaiption | Source SrcPort |Destination Dst Port |EtherType | Protocol | VLAM |Len |Segq# Ack# Window | Flags
X B
A |] | | \ | |
|- o*a Messages
ee 1 Ethernet 192.... 192.168. 1.1 41106 239.255.255.250 1900 IPv4 uDP 392
Custom 1
ustem e 1 Ethernet 192.... 192.168.1.1 44145 239,255.255.250 1900 IPv4 UDP 392
Custam 2 e 7 3.023965 5 Ethernet 192.... 192.168.1.1 35411 255.255.255.255 7436 IPv4 UDP 215
Custom 3 e 1 Ethernet 192,.., 192.168.1,116 65123 111,221.77.143 40022 IPv4 upp 79
Custom 4 “'-‘;" 100 6lps Ethernet 192..., 192,168.1.116 62815 173.194.123.22 443 IPv4 TCP 100 3436450432 3207263013 16339 ACK,PSH
Custom 5 ee 3 23.781ms Ethernet 192.... 192.168.1.116 63113 173.194.123.5 &0 Pv4 TCP 54 342830684 2642604952 16335 ACK
Custom & ee 5 13ps Ethernet 192.... 192.168.1.116 63167 173.194.123.5 443 Pv4 TCP 54 2082998416 1328839927 16430 ACK,FIN
5) Bz L L V3 290 ps Ethernet 192.... 192.168.1.116 63169 173.194.123.5 443 Pv4 TCP 100 2926291650 3359820150 16445 ACKPSH
ata Types
e 2 228.8%6ms Ethernet 192.... 192.168.1.116 63164 173.223.205.74 443 Pv4 TCP 54 2193002818 2430122431 16406 ACK
Network
e “'-‘;" 2 434,148 ms Ethernet 192..., 192,168.1.116 65123 179.178.165.120 50815 IPw4 TCP 54 4037476520 4198595085 253 ACK
@ Transit L] Ethernet 192.... 132,158.1.116 56114 192,168.1.1 53 Pv4 UDP 88
(@) Errors d el 1 Ethernet 192.... 192.168.1.116 62303 192.168.1.1 53 Pv4 uDP 79
Changing « D
No Match =
Details for "Ethernet 192.168.1.116 to 173.194.123.22"
Completed Msg
B Message on Ethernet : 100 bytes captured 00 90 A2 CD D2 26 EC F& &, *
E‘?’-NE““""“ m| Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: WesternD_CD:D2:26 (00:90:A9:CD:D2:26) BB BE 01 3C 08 00 45 00 .n.<..E l
neoVT Internet Protocol Version 4, Src: 192,168.1.116, Dest: 173.194,123.22 00 55 7 22 40 00 20 06 V|G .
Transmission Contrel Protocol, Src port: 62815, Dst port: 443) N E
93 8A CO R& 01 74 AD C2 t.
78 16 F5 5F 01 BB CC D4 {.._...
12 80 BF 2A F3 25 50 18 ...*.%P
SF D3 89 35 00 00 17 03 7?..5...
03 00 29 00 00 00 00 00 ..)....
nn_NA 0A DR 83 37 2020T7. T
4 | mn 3
Details ‘ RWETS‘”9|
P |@ w0 w3 i | . Columns [TCP '\l Setup ... Review Buffer... =
i © (edit) ¢ (edit) + (=dit) o (edit) © (edit) + (edit) + fedit) No Bus Errors

Figure 111: TCP Column Set in Messages View.

For our exchange we are going to load the same web page that we did earlier in the lab when
we generated UDP messages. This time, however, instead of looking at the DNS messages
generated to resolve the web page name, we will look at the actual web request and reply
itself. Standard web pages use the Hypertext Transfer Protocol (HTTP), which is carried over
TCP.

A typical web page contains many elements, including text and graphics, which means many
messages going back and forth between web browser and server. This would be hard to follow,
so instead, we are going to request a simple text file. Loading this file involves the web browser
initiating a TCP connection to the server, sending an HTTP Request, receiving an HTTP Reply,
and then shutting down the TCP connection.

Let’s give it a go.

Version 1.0 - August 3, 2015 156 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Load Web Browser: Start up any web browser.

» Enter Test Page Name: Enter the following into your browser, but do not yet hit Enter to
load it: http://www.intrepidcs.com/ae/eevbl/test.txt.

» Enter Description Column Filter: Enter 54.225.225.147 as a Description column filter.
» Clear Other Column Filters (If Necessary).
» Enable Scroll Mode (If Necessary).

You may recognize the IP address in the column filter as corresponding to Intrepid’s web
server. Entering the filter in the Description field will ensure that we can isolate the transaction
to ICS’s site while ignoring other traffic on the connection.

Okay, do these next three steps together, as quickly as possible:
» Go Online: Go online within Vehicle Spy 3.
» Load Test Page: Press Enter to load the web page.
» Go Offline.

You should now see a total of 10 messages displayed in Vehicle Spy 3, as shown in

Figure 112. Below we describe each message and what it does to give you an idea of how
TCP operates. To help explain what is happening, we make reference to various field values in
these messages as seen in the figure; the numbers will of course be different on your machine
(and will change each time this exercise is done).

Version 1.0 - August 3, 2015 157 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

4,1 TCP Column Setupwvs3 - Vehicle Spy ‘ ‘ [EEEC R
File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help
[M ~ offline PIat‘fcrm:[(None] V] [Deskeop 1 3 pata -~
048 Messages Editor [52 | @ Messages (B3] @
) (o) | |sesi) el Weomd (5] (@rmmesis) © roe Find: pescrpion) -
N
X B |Lir|e "ﬁma ‘Tx |Er |Desmph’un |Suur:e |Sr: Port |DEstnah’un ‘DstPurt |Eﬂ1&rType|Prubucul|VLAN‘Len ‘Seq# |A\:k¢ |Winduw|Flags |Ne
e tessages A | | | |sezs2ss... | [| [| [[] | [|
“3\;'“ 1 Ethernet 192.... 192.168.1.116 63614 54.225.225.147 80 Pvd TCP 86 575225922 0 8192 SYN Eth *
Custom 1
“'-\"“ 2 27.692ms Ethernet 54.2... 54.225.225.147 80 192.168.1.116 83614 IPv4 TCP 66 3207825932 575225923 14600 ACK,SYN Eth
Cuistom 2 “ﬁ,‘“ 3 Bps Ethernet 192.... 192.168.1.116 63614 54,225.225.147 80 IPv4 TCP 54 575220923 3207825933 16425 ACK Eth , |
Custom 3 "'-‘;" 4 104 s Ethernet 192.... 192,168.1.116 63614 54.225.225.147 80 IPv4 TCP 786 575225923 3207325933 16425 ACK,PSH Eth
Custom 4 "'-‘;" 5 27.847 ms Ethernet 54.2.., 54.225,225.147 80 192,168.1,116 63614 IPv4 TCP 60 3207825933 575226655 1004 ACK Eth
Custom 5 “3\;'“ & 12ps Ethernet 54.2... 54.225,225,147 80 192.168.1.116 63614 IPv4 TCP 392 3207825933 575226655 1004 ACK,PSH Eth
Custom & “3\;'“ 7 1.987ms Ethernet 54.2... 54.225,225,147 80 192.168.1.116 63614 IPv4 TCP 60 3207826271 575226655 1004 ACK,FIN Eth
“'-\"“ 8 1Bps Ethernet 192.... 192.168.1.116 63614 54,225.225.147 80 IPv4 TCP 54 575220655 3207826272 16340 ACK Eth *
i< &3 Data Types
“ﬁ,‘“ 9 8.161ms Ethernet 192.... 192.168.1.116 63614 54,225.225.147 80 IPv4 TCP 54 575220655 3207826272 16340 ACK,FIM Eth
Network
3 Transmit ™ >
@)Errors il Details for "Ethernet 192.168.1.116 to 54.225.235.147"
Changing 00 80 RS CD D2 26 =
No Match Ethernet, Src: EC:F4:BB:6E:01:3C, Dest: WesternD_CD:D2:26 (00:90:A9:CD:D2:26) BB €E 01 3C 08 00 E
Completed Msg Internet Protocol Version 4, Src: 192.16.8.1.116, Dest: 54..225.225.147 03 04 52 SE 40 00 I
Transmission Control Protocol, Src port: 63614, Dst port: 80 o . w
B?:Networks D CB 04 CO A8 01 T4
E1 93 F&8 7E 00 50 22
neoVl
40 43 BF 33 8A 0D
Ethernet 40 22 50 4E 00 00 5
S4Q2 0N Fc1ME SO PG SMES)
G 3 HE kB EE
K W el EE OEE S
P33 kil Emid c§l OD OR
T3 74 3R 20 77 7T 77
Details ‘ RWETS‘”9|
H L e owo@ R Columns | TCP - setup.. Review Buffer...
o » (adit) * (edit) » (adit) o [edit) » (adit) » [edit) » (adit) No Bus Errors

Figure 112: TCP Connection and HTTP Exchange in Messages View. The first three messages establish a TCP connection
between the two devices; the next three are used by the client to request the web page and the server to send it; and the

final four terminate the connection. Message 4, which contains the web request, has been selected here, and the bytes of the
actual request string highlighted.

The first three messages comprise the TCP “three-way handshake” used to establish a
connection:

1. Client SYN: Sent by the client to the server to request a connection; notice the SYN
flag is set, the Seq# is 575225922 (a number chosen by the client at random) and Ack#
is 0 (because nothing has been sent yet, so nothing is acknowledged).

2. Server SYN+ACK: Sent in response from the server to the client, this message
acknowledges the client’'s SYN message; notice that its Ack# is 575225923, which is 1
higher than the previous message’s Seq#. The Seqg# field here is the server’s sequence
number.

3. Client ACK: Sent by the client to acknowledge the server’s SYN in the previous
message. The Ack# is 1 higher than message 2’s Seq#, and the Seg# matches the
Ack# sent in message 2.

The next three messages comprise the actual HTTP exchange:

4. HTTP Request: This is the actual request sent by the browser. HTTP sends much of
its data as plain text, so if you click the message you can see much of the information

Version 1.0 - August 3, 2015 158 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

the browser is sending. The following is the actual HTTP command, which is also
highlighted in Figure 112: GET /ae/eevb/test.txt HTTP/1.1. Other lines contain
additional parameters required for the request. Notice that the PSH flag is set for this
message, telling the recipient TCP implementation to send it right through to the web
server without waiting for subsequent data.

5. Request Acknowledgment: An acknowledgment of the client’s request, sent by the
server.

6. HTTP Response: A message containing the requested page. Click this message and
scroll down in the byte display and you will find the actual text of the file near the end:
This is a simple text file for testing Ethernet within Vehicle Spy 3..

The last four messages are used to terminate the connection:

7. Server ACK+FIN: The server has no more data to send, so it sends a message with the
same Ack# as in message 6, and sets the FIN flag.

8. Client ACK: Client acknowledges the server’s desire to close the connection.
9. Client ACK+FIN: Client tells server it is ready to close the connection.
10. Server ACK: Server acknowledges the client; connection is now closed.
We’'re now done with this lab.
» Close Web Browser.

» Resize VSpy Window: If you made the VSpy window larger for this part of the lab, you
can return it to its default size now.

Version 1.0 - August 3, 2015 159 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 4.2 Transmitting Input/Output Data Using UDP

If you've been following the Lab Manual from the beginning and doing all of its experiments,
you are pretty much an EEVB veteran by now! And if you have done all of the labs up to
this point, you probably also did the initial demo that’s described in the EEVB User’s Guide,
which we used to illustrate the basic operation of the board. You may recall that the demo
in question programmed both EEVB nodes to send a simple raw Ethernet message every
100 milliseconds, and allowed you to control the flash rate of the board’s LEDs using its
potentiometers.

In this lab we will revisit this demo, using a variation of the initial demo that replaces the raw
Ethernet messages with equivalent versions using IP and UDP. This serves as an example
of how UDP might be used in a real TCP/IP network, and is also more representative of how
Automotive Ethernet messages actually work than the raw Ethernet messages are.

Since you are now experienced with VSpy, this time around we will go through all of the
message definitions and function block scripts to explain how the demo works in detail. Part of
this will be demonstrating how this single setup implements different behavior in Node A and
Node B, which is accomplished in a slightly different way than we have done before in the Lab
Manual.

Part4.2A Load and Analyze UDP Input Output Script

As described above, this demo works in much the same way as the one in the User’s Guide.
We'll start as we often do, by loading the setup file that contains the message definitions and
function blocks. We then walk through the setup and explain each component.

» Load 4.2 UDP Input Output: As usual, you can find this file under the | My setups| tab on
the Logon Screen.

Vehicle Spy 3 will present you with a screen that looks nearly identical to the one you saw with
the User’s Guide demo, showing Messages View in the top half of the screen, and a pair of
signal plots on the bottom.

If you have a relatively small screen and you find that Details View is mostly obscuring the
main Messages View window, please turn it off.

» Disable Details View (If Necessary).
Let’s also close the signal plots for now, so we have more room to examine our setup.

» Close Signal Plot Windows: Click the small [E5] button on the top right of each of
these small windows.

Let’s take a look at the message definitions in this file.

» Switch to Messages Editor, Transmit Side.

Version 1.0 - August 3, 2015 160 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You will see two messages defined here, named Node A UDP Data and Node B UDP Data
(Figure 113). These are the same as the messages in the User’s Guide demo, but notice from
their summaries that they are defined as IPv4/UDP messages based on their EtherType and
Protocol field values. The Source and Destination values are IP addresses, with the two nodes
containing complementary values of 10.0.0.1 and 10.0.0.2. These, along with the port numbers,
are all default values that come from the UDP Ethernet packet template.

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Run Tools Help

- | Offline PIatform:I{None} v] (&} Desktop1 | [%, Data |'|
o Messages Ed\tor@- Messages @L@, Tx Panel@lE Function Blocks @| L=
‘ == Receive = i i) Database mﬂ:hemet EJ+-|$6E|‘”|%H‘.‘G|®|D"E|‘

Key | Description EtherType |VLAN Protocol Source [Port | Destnation [Port [Len |Raw Payload Bytes
i N N N o o o N N N

outd IPv4 Mone LUDP 10.0.0.1 60001 10.0.0.2 60002
outl Node BUDP Data IPv4 Mone LUDP 10.0.0.2 60002 10.0.0.1 60001

Setup for Node A UDP Data
Description Hotkey

Mode A LUDP Data (Mo Hotkey) -

Message Filter Specification

Mot available for this EtherType or Protocol

Signals in Message | UDP Data | UDF Header | 1Py Header | Ethernet Header |

v = Equation |{Raw Value}|o,1,0,48

Signals in Message |Byte 33 |Byte 40 |B
[s[4[a2[x[a]] e[s[4][z[4]a

yte 41 |Byte 42
[3[e] s[a[3[2][[a[6] s[4[a[[:]a

Description
Mode A Potentiometer Value

Figure 113: UDP Input Output Message Definitions.

At the bottom of the screen you can see that there are four tabs defined for this message.
From right to left (reflecting the order they appear in the message itself) these are: Ethernet
Header, IPv4 Header, UDP Header and UDP Data. The three data signals shown should look
familiar, as they are the same ones we saw in the earlier demo upon which this one is based.
However, they are now in the UDP Data section, nested under the UDP, IPv4 and Ethernet
headers. This also means that they are much “deeper” within the message.

» Scroll the Signal Display to Find the Data Signal Bytes: Move the scroll bar to the
right until the signal bytes are visible.

Version 1.0 - August 3, 2015 161 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

As you can see in Figure 114, these signals now occupy bytes 43 to 46 of the message, as

opposed to bytes 15 to 18; the difference of 28 corresponds to the 20-byte IPv4 and 8-byte
UDP header lengths.

Setup for Node A UDP Data

Description Hotkey
Message Filter Specification

Mot available for this EtherType or Protocol

Signals in Message | UDP Data | UDP Header | IPv4 Header | Ethernet Header|

+3 * = Equation |{Raw Value}|D,1,0,48

Signals in Message Byte 42 Byte 43 Byte 44 Byte 45 Byte 456 Byte 47 Byte 43 Byte 49 Byte 50
Description Type 7/s|5|4|3)2[1[c I EEEEEEEEEEEEEREREEEEEREAEEREEEE 7 5|5 < 3| 2[t]0| 75| 5| 4|3)2|1]0]7|s 5| 4|3]2|1]a7| 6|5 4|3
[Node A Potentiometer Value _____[LEEY EEBEEREEEEEEEERE

Node A Seguence Mumber Analog HEHEEIH
Mode A Button Pressed Analog [7[&] [+]=[2] 2]]

] [[} | b

Figure 114: UDP Input Output Data Signals.

» Switch to Receive Side.

The message definitions here are identical to the ones on the transmit side; they were copied
here to allow the messages coming from the EEVB to be properly decoded in VSpy.

» Switch to Function Blocks.

Here we see five different function block scripts, which makes the setup seem rather complex,
though it’s really not. Let’s go through them one at a time.

» Click the Node A Send UDP Data Script.

This script (Figure 115) sets the three transmit message signals for the Node A UDP Data
message. The Node A Sequence Number field is set by incrementing its previous value, while
the Node A Potentiometer Value and Node A Button Pressed signals are set to their respective

physical input device readings. The message is then transmitted, and the script waits for 100
milliseconds before running again.

Step |Description Value Comment
0 {Mode A Sequence Mumber (Valug) :out0-sig23-0} = "
1 [| Set Value {Node A Sequence Number (Value) out0-sig23-0b +1 1/ Increment node sequence number,
0 {Mode A Potentiometer Value {Value) :outd-sig22-0} = o .) ")
2 |] SetValue fAnalog Input 1 (Value) :neod-ai0-Odndex(0)} /{ Set potentiometer value to current reading of analog input 1.
{Mode A Button Pressed {(Value) :outd-sig24-0} = ")
-0 i ;
3 [+0setvalue {Switch 1 (Valug) :neod-sw0-0-ndex (0]} /{ Set pushbutton status based on switch 1 value.
4 B Transmit Mode A UDP Data
2% wait For =100

Figure 115: Node A Send UDP Data Function Block Script.

Version 1.0 - August 3, 2015 162 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Click the Node B Send UDP Data Script.

Of course, the Node B Send UDP Data script is the same as the one above, but runs on Node
B instead of Node A.

» Click the Node A LED Blink Script.

As you have undoubtedly figured out on your own, this script (Figure 116) flashes one of

the user-controllable LEDs on Node A. It starts by toggling the status of LED1, turning it

off if it is currently on and vice-versa. It then waits for an amount of time based on the read
potentiometer value of the node. The potentiometer produces a value of 0 to 4,095, which is
divided by 4.095 resulting in a value of 0 to 1000 milliseconds. The value 20 is then added to
produce a minimum flash time of 20 ms; this was done because a flash rate any smaller than
about 20 ms causes the LED to flash too quickly for most people to notice (it just looks like it is
solidly lit).

Step |Description Value Comment
1 Ef If {LED 1 (Value) :neo0-d0-0-ndex{o)} /i Check current value of LED 1, where a value of 0 meanz itis off and 1 means it's on.
Set Value 4LED 1 (Value) :necl-dd-0-ndex{d)} =0 {f Current value is 1, so change it to 0.

TZendif

E‘f’} \ait For = {Analog Input 1 (Value) :neol-ail-0-ndex(0)} f 4.085 |/ Wait for 20 to about 1000 miliseconds, based on the value of the node potentiometer (which ranges
+ 20

2

3

4 Set Value {LED 1 (Value) :neo0-d0-0-ndex(D)} = 1 i Current value is 0, so change it to 1.
5

5 from 0 to 4095).

Figure 116: Node A LED Blink Function Block Script.

» Click the Node B LED Blink Script.

And again, this script does the same as above for Node B, except this time using LED2 instead
of LED1 (just for variety).

» Select the Node Initialization Script

We typically want to have different functionality running in each of the nodes of the EEVB.
Thus far we have accomplished this in two ways.

The simplest method, which we used early in the Lab Manual, was just to have two different
setup files. However, this has a few drawbacks, such as the need to duplicate message
definitions, and having to swap back and forth when sending CoreMinis to the nodes.

In Lab 3.2 we introduced the idea of reading the EEVB serial number to allow a single script to
act differently based on whether it is running on Node A or Node B. This works well, but is only
well-suited to short scripts or ones where very few of the steps change depending on node.
Longer scripts can get cumbersome if it's necessary to check which node we are running on
many times.

In this setup (see Figure 117) we introduce a third option, which is ideal for more complex
programs. We define separate function block scripts to run on Node A and on Node B, as we
did with the two pairs of Send UDP Data and LED Blink scripts. Then we have a fifth script,

Version 1.0 - August 3, 2015 163 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

here called Node Initialization, that queries the device and then starts other scripts appropriate
to the node it determines it is running on.

The first step in the script does the actual serial number comparison. If true, the two Node

A scripts are started, and if false, the two Node B scripts. You'll also see that there are two
statements to control LEDs: these turn off the LEDs that aren’t going to be flashed, which
means setting LED2 to zero on Node A, and LED1 to zero on Node B. Notice that the final step
here is a Stop command, because we don’t want this script to run continuously, only once.

Step |Description Value Comment
1 E If {Device Serial Num} mod 2 =0 {f 1f serial number is even, this is Node A.
2 Set Value 4LED 2 (Value) :neol-d1-0-ndex{d)} =0 {f Turn off LED2 on Node A since we use LED1 on that node for display.
3 Function Start Node A Send UDP Data
4 Function Start Node A LED Blink
5 -L Else /f Otherwise, itis Node B.
[Set Value 4LED 1 (Value) :neod-d0-0-ndex{0)} =0 ff Turn off LED1 on Node B since we use LEDZ on that node for display.
7 = Function Start Node B Send UDP Data
g = Function Start Node B LED Blink
g [RendIf
10 B stop nfa J{ Run this script only once.,

Figure 117: Node Initialization Function Block Script.

One final part of the puzzle is necessary for this setup to work. Take a look at the Start
Type column in the summary list of the function block scripts, and you'll see that the Node
Initialization script is set to Immediate Embedded Only, while the others are Manual. This
ensures that when downloaded to the EEVB, only the Node Initialization script runs; it then
starts the other nodes as appropriate.

Part4.2B Reload and Run UDP Input Output Script

Now that we know what this script does, let’s run it and take a look at the output it produces.
We'll actually start by reloading the setup file; this is the easiest way to get back the mixed
setup with Messages View on top and the two signal plots on the bottom.

» Load 4.2 UDP Input Output.
Next, send the script to both nodes.

» Send CoreMini to Node A.

» Send CoreMini to Node B.

As was the case with the User’s Guide demo, you should now see LED1 on Node A blinking at
a rate you can change with its potentiometer, and the same for LED2 on Node B.

» Set Message Filter: Enter UDP in the Description filter field, so we only see our
messages.

» Turn Scroll Mode Off (If Necessary).
» Go Online.

Version 1.0 - August 3, 2015 164 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

You should now see a display similar to Figure 118, which again, will be very familiar if you did
the similar demo in the User’s Guide.

4.2 UDP Input Output.vs3 - Vehicle Spy [E=NES

File Setup Spy Networks Measurement Embedded Tools Scripting and Automation Bun Tools Help

LE ~| online (CoreMini active). j Platform:| (None) 4|9, | | @ Desktop1 [% Data |~

ava Messages Editor [E2 | @ Messages [E5 | B, TxParel |E||:- Function Blacks Izﬂ Lol

- = 5 - - T .
[iFiter | [meadd | [Gscooll | [Tpetails | [¥]Expand @ (&T Time Abs|[M Pause || B save | [¥ Erase] Find: Des
) ava Messages ~ Count | Time: Tx Er %l Description Source Src Port | Destination Dst Port | EtherType | Protocol | VLAN [Len
Filter LUDP
Custom 1 .
otva Bl 101,974 ms Mode A UDP Data 10.0.0.1 60001 10.0.0.2 60002 IPv4 ucp 50
Custom 2
oo 101.978 ms Mode B UDP Data 10.0.0.2 60002 10.0.0.1 60001 IPv4 UDP 60
Custom 3
Custom 4 3
€
Custom 5
B
Custom &
=) Ed Data Types
Network
@ Transmit < [b
(I
@) Errors I g | 0 e ow g@ O OIE b Columns |Ethernet - Setup ... Review Buffer...
| & 1 [sew |
E Signal Flat [«=%2] E signalPiots ===,

Flot Signals E] B [Node A Signals -][Flot Signals E] B [Node B Signals -][

ot Logging - Lines Collected: 0 ot Logging - Lines Collected: 0

] [+ <f Q@] o o @] i oex ied | > [1] [+ & QI&| (e] WG] b [oen froa|

- 1.00 5 - - 1.00 5
— 5 4000 / - - 4000 /
o 3 = =] -
3 5 3 2 G 3
E a0 > 2 E a0 > @ I
=1 IS (7] =1 Iﬁ w
z 2 o z 2 i
] o o]] o
9 £ 9 £
c - 5 c H <
g = m004 = 0.50 g £ 0009 2 0.50 o
3
g w4 2 a g woq 2 a
° 2 < 4 2 @
= < g o g
] o o o
o] o = o -]
Q -] z =] o z
4 <} z Zo
o4 £ oA .. o o- -
160.0 165.0 170.0 175.0 160.0 165.0 170.0 175.0
i * [edit) * [edit) * [edit) * [edit) = (edit) * [edit) Mo Bus Errors

Figure 118: UDP Input Output Messages and Signal Plots.

Let’'s now take a look at those messages in more detail. Speaking of which, we should turn
Details View back on; once again, we will close the signal plots to make more room.

» Close Signal Plot Windows.
» Enable Details View.
» Select Node A UDP Data Message.

On the left side of Details View you will see the four lines we expect for a UDP message, the
first being the standard one for Automotive Ethernet messages, and the next three containing
this message’s nested headers: Ethernet, IPv4 and UDP. As always, you can expand these
headers to see the fields they contain. The header fields and their current values are also

Version 1.0 - August 3, 2015 165 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

shown in the Name/Value section in the middle of Details View, since this message is being
recognized and fully decoded by VSpy.

» Scroll Down in the Name/Value Section of Details View.

Near the bottom of the screen you will see our three data fields, with their values changing
in real time: the sequence number counts up, the potentiometer value fluctuates slightly or
changes more if you move the dial, and the button value changes from 0 to 1 if the button is
pressed. Of course, we can do the same for the Node B UDP Data message.

» Go Offline.

Version 1.0 - August 3, 2015 166 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 4.3 Creating a Simple Custom UDP Message Exchange Protocol

UDP is a common choice for simple messaging protocols because it is simple itself and allows
messages to be sent over IP internetworks with a minimum of fuss or overhead. As mentioned
in the introduction to this section, it is ideal for time-sensitive messaging, and also in cases
where it doesn’t matter if data is lost, because it can just be transmitted again.

In the previous lab we used UDP to send data generated by the EEVB’s input devices, as well
as a sequential counter. This is not really how most TCP/IP protocols work, however, because
the same data is sent automatically, and there is no interaction between devices. In this lab
we will use a custom-designed UDP protocol based on the classical client/server method of
communication: the client sends requests, and the server responds to them.

Our creation, which we have dubbed a headline server; it is intended to be a simplified version
of a news service. Here’s how it works.

The client, which runs on EEVB Node A, sends requests for news headlines to the server:
e There are five types: Global News, National News, Local News, Weather, and Sports.

e The headline requested is specified by the position of the potentiometer dial, which is
split into five roughly-equal regions.

e Anew headline request is sent every 5 seconds. In a real implementation of this sort of
service, requests would instead be triggered by users, but this method makes it easier
for us to see the client/server exchanges in action.

¢ |n addition to the regular headline requests, there are two special requests. The
first asks for a repeat of the most recently-requested headline (ignoring the current
potentiometer setting). The second asks for the date/timestamp of the current headline
data. These are sent in alternating fashion when the node’s pushbutton is held down.

The server is designed to run in Vehicle Spy on the PC so that we can easily monitor the
requests coming in and responses going out:

e A set of five application signals holds the various headlines. These can be manually
edited to whatever values you like.

e Additional application signals hold the value of the last headline and the date/
timestamps for the special requests.

As we’ve seen in earlier labs, this is again a simplified version of this particular messaging
functionality. In a real implementation we would probably focus on making the protocol more
flexible by allowing more types of data to be requested. As mentioned, requests would come
from actual users rather than just being generated automatically. We’d also have a slightly
more elegant way of selecting the headline we want, since the EEVB’s inputs are quite limited.
Finally, a proper server would use a database for the information it provides rather than hard-
coded variables. All that said, this cut down implementation will give you a good idea of the
sort of exchanges you can design using TCP/IP within Automotive Ethernet.

Version 1.0 - August 3, 2015 167 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 4.3A Load and Analyze Headline Client Script

Let’s begin by looking at the headline client script, which generates requests. As usual, we’ll
load the script, then walk through the setup before sending it to the EEVB to run.

» Load 4.3 Headline Client: This file can be found with the other lab example scripts
under the | my setups| tab on the Logon Screen.

You will begin in the Messages Editor on the transmit side. There is only one message defined
here: Headline Request, a UDP message using VSpy-default IP addresses and port numbers.
In the signal area at the bottom of the screen you will find that it has three custom fields:

e Operation: Defines what sort of request is being sent.
e Headline Code: For regular headline requests, which headline is wanted.
¢ Request Number: A sequential counter to identify each request as it is sent

As was the case for the messages in Lab 4.2, these signals begin at byte 43, because the
Ethernet, IPv4 and UDP headers combine to take up 42 bytes.

» Scroll the Signal Display: Move the scroll bar to the right to find the signal bytes.

You should now see something similar to the display in Figure 119.

43 Headline Client.vs3 - Vehicle &_{E@E

File 5etup SpyMNetworks Measurement Embedded Tools GMLAN Scripting and Automation Run Tools Help

~ | Offline PIatform:l(None) '} (B Desktop1 ! % pata |'|
ova Messages Editor @ Messages [22 | | = Function Blacks @I “L application Sighals @‘ o

oo Receive =) Database Ethernet

F+ -ls@mel-(g+e|@ @],
EtherType |VLAN Protocal Source [Port | Destination [Port [Len [Raw Payload Bytes
o e N e o o e e o o

s UDP 10.0.0.1 60001 10.0.0.2 60002

Key Description

outdl ;Headine Req None

Setup for Headline Request

Description Hotkey

(NoHotkey) -

Headline Request

Message Filter Specification

Mot available for this EtherType or Protocal

Signals in Message | UDP Date | Li0P Header | 1Pv4 Header | Ethernet Header |

o -

Signals in Message

Eguation |{Raw value}|o,1,0,48

Description

Headline Code
Request Number

P

“

Type

StateEncoded
StateEncoded
Analog

Figure 119: Headline Request Message Definition and Signals.

|Byte 40 |Byte 41 |Byte 42 Byte 43 Byte 44 Byte 45 Byte 46 Byte 47 Byte 48 R
[/ s[a[s[z] o]2]of =] [2] [e][<]s] o] -] NN AN N A AR AR RN AR AR AR o[- [[:=[[o][s =[[]:
T

No Bus Errors

Version 1.0 - August 3, 2015

168

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Note that two of these messages are state-encoded, which means that they carry integers
that correspond to specific string values. We'll see later on that when these messages are
displayed, the strings are shown in addition to the numbers, making the data values more
meaningful and the signals easier to understand.

Let’s take a look at the state values for the Operation field.

» Edit Signals for the Operation Field: Select the Operation field, then click the
button above the signal byte display.

A dialog box appears. Near the bottom you will see a set of State and Raw Value pairs,
showing the state encoding for this signal (Figure 120). There are three values, though you

will need to scroll the small box containing the values to see them all: RequestHeadline (1),
LastHeadline (2) and RequestTimestamp (3). These of course correspond to the three possible
requests that the client makes.

Edit Signal |

Signal Type Raw Value Type

[state Encoded -] [unsigned Integer -

Bit Position (0-12111) Byte (1-1514) Bit (7-0)

Start: 336 Or 7

Bits
Length: 8 - Or 1 -
@ Big End First : Byte X = Byte (X+1) Motorola Format
*) Little End First : Byte X = Byte (X+1) Intel Format

Figure 120: Messages Editor Edit Signal Dialog Box.

» Switch to Receive Side.

Here we see a copy of the transmit message. This client only transmits, it doesn’t receive or
process data from other devices. The copy of the transmit message is here only so we can
take a look at the data before we load the headline server script; otherwise, it would not really
be necessary either.

» Switch to Function Blocks.

There is only one function block for this script, which is shown in Figure 121. The script begins
by incrementing the Request Number field, which labels each request with a sequential
number. If the node’s pushbutton is currently up, a normal request is generated by setting the
Operation field to a value of 1, and then setting the Headline Code field to a value from 1 to 5
depending on the potentiometer setting. If the pushbutton is held down, then either a request
for the previous headline or the timestamp is sent, with the requests alternating based on the

Version 1.0 - August 3, 2015 169 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

value of the Request Timestamp Next application signal. After filling in data for the request, it
is sent, and then a delay of 5 seconds occurs before the process repeats. Please refer to the
comments in the function block for a detailed description of each step.

Step |Description

1 Set Value

2 [Frf

3 Set Value

4 Set Value

5 [HEke

& Set Value

7 % 1f

8 Set Value
9 Set Value
10 [A Eke
11 Set Value
12 Set Value
13 [* EndIf
14 [EEndIf

15 ETransmit
16 I Wait For

Figure 121: Headline Client Function Block Script.

Part 4.3B Run Headline Client Script

Value

{Request Mumber (Value) :outd-sig25-0% =
JRequest Mumber (Value) :outd-sig25-0F + 1

ISwitch 1 (Valug) :neold-swi-0-ndex(0)} =0
{Operation (Value) routd-sig22-0} = 1

{Headline Code (Value) :outd-sig23-0} =
int{{Analog Input 1 (Value)
:neol-ail-0-ndex{0)}/820) +1

JHeadline Code (Value) :outd-sig23-0} =0
JRequest Timestamp Mext :sigl-index(0)} = 1
{Operation (Value) routd-sig22-0} = 3
{Request Timestamp Next :sigl-ndex(0)} =0

{Operation (Value) :outd-sig22-0} = 2

{Request Timestamp Next :sigi-index(0)} = 1

Headline Request
5.000000 sec

Comment
[Sequentially increment request number field; first request will be 1.

J/{ By default {node pushbutton up) send a normal headline request.

/{ Generate a headline number from 1 to 5. This is done by dividing the current node potentiometer value
into roughly 5 equal areas so the number changes as the dial is rotated.

/{ If the node's pushbutton is held down, alternate between requesting for the previously sent headline
J/{ For both of the spedal request types, the Headline Code should be set to 0 since it is not used.

/{Flagis 1, so request the timestamp next while button is down, then change flag to 0.

/{ Flag is 0, so request previous headline, then set flag to 1.

/{ Send the request.

f{ Wait for a number of seconds equal to the value of the Request Send Rate variable.

Let’s send the script to Node A and then quickly take a look at the messages it is sending.
We will disable Details View for the moment as well, since these messages have many fields
(including headers) and this will make it easier to see them.

» Send CoreMini to Node A.

» Switch to Messages View.

» Set Message Filter: Enter Headline in the Description filter field, so we only see our
messages.

v vy

Disable Details View.

Go Online.

Turn Scroll Mode Off (If Necessary).

» Expand the Headline Request Message to Show Signals.

Vehicle Spy should now appear similar to Figure 122.

Version 1.0 - August 3, 2015

170 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

43 Headline Client.vs3 - Vehicle Spy | B
File Setup Spy Metworks Measurement Embedded Tools GMLAM Scripting and Automation Run Tools Help
I 1 Platform:| (None) ETERY (& Desktop1 (3, pata |~
[£2]) @ Messages [= Function Blocks IE\I"; Applicatian Signals |§\| ix
] [=eadd | [@scoll | [TJpetails | @Expand [9] (&t Time Abs|[M Pause || B save | [X Erase |[&) Fmd:@ .
% X |Cuunt|1’|me |Tx |Er |%¢ Description |Suurca ‘Src Purt|Desﬁnah’un ‘Dst Purt|Etf'|ErTyDE|Prub3:ul ‘VLAN Len
e — Filter [I | | |Head\|ne | ‘ | ‘ | | ‘
B o%a 5.001669 5 Headline Request 10.0.0.1 60001 10.0.0.2 60002 IPv4 uop &80
Custom 1 3¢ Destination MAC Address = Intrepid_00:00:02 [FC70000002)
Custom 2 B¢ Source MAC Address = Intrepid_00:00:01 [FC70000001]
Custom 3 2% EtherType or Length = IPv4 [800]
Custom 4 A%, TP Version = 4[4
Custom 5 A%, Internet Header Length = 5 [39
Custom 6 A%, Differentiated Services Code Point = 0 [0]
& 3 Data Types A%, Explicit Congestion Notification = 0 [0
A, TotalLength = 32 [20]
Network A% Identification = 0 [0]
@ Transmit A%, Flag_Reserved = False [0]
@) Errors R, Flag DF = False [0]
Changing . A%, Flag_MF = False [0]
No Match A% Fragment Offset = 0[]
Completed Msg E';Fu Time To Live = 128 [80]
E@GMLAN :v:u Protocol = uppP [i1]
Ay IPv4 Header Checksum = 9931 [26CE]
Diagnostics A%, Source IP Address = 10.0.0.1 [A000001]
Node Active (NCA) 8% Destination [P Address - 10.0.0.2 [A000002]
VNMF 7% Source Port = 60001 [EA61]
HV Wakeup A%, Destination Part = 60002 [EABZ]
=) T_B:,Nemﬂrks B A% UDPHeader +Data Length = 12 [q]
- 8¢ UDP Checksum - = v
Ethernet AY. Operation = RequestHeadine [1]
A%, Headine Code = Mational News [2]
A% Request Number = ElEN] &
—|« "
= ‘ wooofe 1 3@ ‘ e Columns lEthernet v|[Setup ... Review Buffer... :
o + (=dit) o (edit) + (edit) + (edit) + (adit) o (edit) No Bus Efrors

Figure 122: Headline Request Messages Sent by EEVB Node A.

A new Headline Request will be sent approximately every 5 seconds, with the Request
Number field increasing each time a new message is received. Notice that the Operation and
Headline Code fields are shown with both their string descriptions and raw values in square
brackets.

» Turn the Node A Potentiometer.

Moving the dial will alter the Headline Code value, allowing you to select one of the five
predefined types.

» Hold Down the Node A Pushbutton.

While the button is depressed, the Operation value will change to alternate between
LastHeadline and RequestTimestamp.

> Release the Node A Pushbutton.
Now the Operation value will go back to sending RequestHeadline again.

» Go Offline.

Version 1.0 - August 3, 2015 171 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part 4.3C Load and Analyze Headline Server Script
Let’s now look at the server side of the equation.

» Return to Logon Screen.

» Load 4.3 Headline Server.

Once again we start in the Messages Editor, transmit side, where there is a single message
unsurprisingly called Headline Response. The first three signals are the same as those in the
Headline Request message; the fourth is a text field which is used to carry the actual data
requested.

» Switch to Receive Side.

On the receive side we have a definition of the Headline Request message, which is what this
script responds to. It is the same as the definition in the headline client setup. We don’t need
a copy of the Headline Response message here because it is transmitted by VSpy and not an
EEVB node, so VSpy will automatically decode it in Messages View.

» Switch to Application Signals.

The first five signals here contain the five different headlines that can be requested. These are
text values that you can change to whatever you wish. The remaining two signals carry the
timestamp (which again can be manually modified) and a variable that is set to the value of the
last headline requested by the function block script we are about to examine.

» Switch to Function Blocks.

The function block script for this setup can be found in Figure 123; it is long, but not hard to
understand if you look at it in sections:

e Steps 1 and 2: Trigger the script and clear the Present flag to ensure it runs once per
request.

e Steps 3 to 8: Set various values in the outgoing message based on comparable values
in the message received.

e Steps 9 to 13: Check to see if either of the “special’ requests have been received. If
so, sets the outgoing text response field to the saved last headline value or the date/
timestamp.

e Steps 14 to 26: Processes a standard headline request, checking which headline was
asked for and then setting the text response field accordingly.

e Step 27: Transmits the response.

Version 1.0 - August 3, 2015 172 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Step | Description Value

1 9 wait Until {Headline Request (Present) :in4-0}

2 Set Value {Headine Request (Present) in4-0} = 0

3 Set Value {f&f“”a"”’a s d’;fg;:s(svg‘(jl“f?nj‘“;;fg}” 0}) Set destination MAC address, I address and port number to source values of incoming message.
{Destination [P Address (Value) :out2-sig17-0} =

4 Set Value {Source IP Address (Value) ind-sig15-0}

5 Set Value

[Set Value }{ Copy request number from source to outgeing message to enable matching of requests and responses.

7 Set Value J{ Copy Cperation and Headine Cods for reference.

8 Set value

9 [Frf J{ Request is asking for the previously sent headine.

pul Set Value

11 [HEserf J{ Request for last update tmestamp.,

12 Set Value

1z [ae }/ Normal headine request

v [* o /i Decide what to send back based on the Headine Code value.

15 Setvalue

15 [} Ekelf

17 Set Value
18 [} Ekelf

19 Set Value
0 [F Eserf

21 Set Value
2 [Es

23 setvalue

24 T2 EndIf

e :sig6-index(0)} = {Response Text

25 Set Value 250 i Save the headine we just selected in the Last Headine app signal soitis available if requested.

27 B Transmi it Headiine Response /i Send the response back to the dient

Figure 123: Headline Server Function Block Script.

Part 4.3D Run Headline Server Script

We will be running this script right within VSpy, so we don’t need to send anything to the
EEVB, just set up Messages View to optimally display the message exchange. Details View
should already be off from earlier steps in this lab, but if not, please disable it so you can more
easily see message details. Scroll mode should also be off for the same reason.

» Switch to Messages View.

» Set Message Filter: Enter Headline in the Description filter field, so we only see our
messages.

» Go Online.

You should see two messages showing up every 5 seconds: headline requests and matching
responses.

» Expand the Headline Response Message to Show Signals.

Now you can see the fields in the response messages, which will look like Figure 124. Notice
that the copying of the request parameters to the output (Operation and Headline Code) makes
it easy to see that the correct response is being sent to each request.

» Turn the Node A Potentiometer.

As you move the potentiometer, the Headline Code value will change, with the message in
Response Text changing to match it.

Version 1.0 - August 3, 2015 173 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

4.3 Headline Server.vs3 - Vehide Spy L = | E éj
File Setup SpyMetworks Measurement Embedded Tools GMLAM Scripting and Automation Run Tools Help
Il_m_' Onfine ' Platform:| (MNone) /%, | (@ Deskiopl 3 pata |~
50 Messages Editor [22 | @ Messages @E Function Blocks \E\I'J Application Signals IE“ “
[Zeriter] [==Add | [@scol | [Jpetails | [v1Expand [9] &7 Time Abs[M Pause | save | [X Erase |[] Find:|Des s
% x |Cuunt |'I'|mE |Tx |Er |%¢ Description |Suurce |Sr: Port ‘ Destination |D5t Purt|Eﬂ1&rType|Prutucu\ |\I'LAN Len
e Filter | | | | !Headhna ; | ‘ | | | |
|=) oo Messages
oha 5.001701s Headline Reguest 10.0.0.1 60001 10.0.0.2 60002 IPv4 UDP &0
Custom 1
= E 5.001040 s 'J) Headline Response 10.0.0.2 60002 10.0.0.1 60001 IPv4 UDP 78
Custom 2 2% Destination MAC Address N irepid 00:00:01 [FC70000001]
Custom 3 Rt Source MAC Address Bl Intrenid_00:00:01 [FC70000001]
Custom 4 Af, EtherType or Length = N
Custom 5 £%. 1P Version =
oe _
Custom & ity Intermet Header Length = B8l
A%, Differentiated Services Code Point = @
L 5 ot e 5 i
A% Explicit Congestion Notification =
Network 0o
% TotdLength -
@) Transmit 2 Identification = @
@ Errors £%, Flag_Reserved =
Changing &%, Flag OF =
Mo Match d Rf, Flag_MF =
oe _
Completed Msg AN Fragment Offset -
5 @GMLAN R% Time To Live =
2% Protocol = [EEHER
Diagnostics ”
g A% IPv4Header Checksum =
Node Active (NCA) 2% Source P Address N 10.0.0.2 [AD00ODZ]
VHME 2%, Destination IP Address B 10.0.0.1_[A000001]
HY Wakeup A, Source Port ERG0002 [EAGT]
5 7k Networks B £%. Destination Part ER:0001 [EAG]
" Af, UDP Header +DataLength = [ElEs
£+, UDP Checksum Ll :27¢7 [CE3D
Ethernet v
£f, Operation Rl R =questHeadine[1]]
A%, Headine Code = EEIEENE
A, Request Number = EEEEE
£%. Response Text P 154 to dose for repail
=| ¢ [b
1
-m = | .ﬂ L | oZs Columns [Ethernet - ‘[Setup ... Review Buffer...
1
© o [adit) s (edit) s [edit) s [adit) s (edit) * (edit) No Bus Errors

Figure 124: Headline Request Messages Sent by EEVB Node A.

» Hold Down the Node A Pushbutton.

» Turn the Node A Potentiometer.

While the button is held down you will see the Operation value alternate between LastHeadline
and RequestTimestamp, and again, the Response Text field will change appropriately as well.
Notice that changing the potentiometer has no effect while the pushbutton is depressed.

» Release the Node A Pushbutton.

Now the Operation value will go back to sending RequestHeadline again. If you changed the
node potentiometer by enough to alter the requested Headline Code, the Response Text will
change to match the new headline type requested.

We’'re now done with this lab, so let’s reset things back to be closer to their usual configuration.

» Turn Details view

» Go Offline.

Version 1.0 - August 3, 2015

174 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Lab 4.4 Simulating TCP Connection Establishment and Termination

The headline server we examined in Lab 4.3 is a great candidate for using UDP for two
primary reasons: the messages exchanged are short and simple, and it doesn’t really matter
very much if they don’t make it from source to destination. On occasion, a request might be
lost, or it might be received but the response lost. In these cases the user would simply send
the request again, and it would probably work fine, the lost messages representing merely a
minor inconvenience.

Imagine instead, however, that we were trying to transfer a large file between two devices.
Each file would need to be broken into smaller pieces for transmission, and each and every
one of those pieces would need to be correctly received—and reassembled in the right order—
for the file transfer to be considered successful. This is a job far better suited to TCP, because
it keeps track of all of the data sent between two devices, ensuring that every byte transmitted
by the sender is either received correctly, or is flagged for retransmission. TCP also contains
facilities to manage large data flows such as might occur when moving files around.

As discussed in this section’s introduction, the benefits that TCP provides come with a

small cost: slightly lower performance (due to protocol overhead) and significantly greater
complexity. In fact, TCP is so much more complex than UDP that it would be impractical for us
to simulate its use with the EEVB. Implementing all of the intelligence necessary to manage
TCP data exchanges would result in a setup file so large that it would be more confusing to
you than helpful.

Instead, we have decided to focus on one important element of the operation of the TCP
protocol: connections. We already saw an example of an actual TCP connection in Part 4.1E.
Now we will discuss connections in more detail, and then show how they can be simulated
using the Ethernet EVB.

An Overview of TCP Connections

Because TCP keeps track of data exchanges, it isn’t possible to have one device just start
sending data to another “out of the blue”. The two devices must first establish a logical
connection, which is used to let one device notify the other that it wishes to communicate, and
to make any necessary preparations before data transmissions begin. This can be thought of
as analogous to making a telephone call before beginning to speak. When either device no
longer wants to communicate, it can terminate the connection, which is like hanging up the
phone.

Both the client and server transition among various states as the connection is established,
used and then torn down. The state describes the “status” of the connection as seen by each
device, and changes as the connection evolves. In our simulation, EEVB Node A will play the
role of the client, while the server script runs on Node B. Each has different states.

Version 1.0 - August 3, 2015 175 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Connection Establishment

Both devices initially begin in the CLOSED state, and the process of connection establishment
proceeds as follows:

E1.

E2.

E3.

E4.

ES.

Server Waits for Incoming Connection Requests: The server prepares the necessary
data structures for a connection and then transitions to the LISTEN state, where it sits
waiting to be contacted by a client.

Client Initiates Connection: The client transmits a TCP message with the SYN flag
set, which indicates a desire to open a connection. This message contains the client’s
initial Sequence Number value, which is chosen randomly. As soon as this is sent, the
client transitions to the SYN-SENT state.

Server Receives, Processes and Acknowledges Connection Request: The server
receives the client's SYN message, processes it, and responds with a SYN+ACK
message. This message acknowledges the client’s request and provides the client
with the server’s initial Sequence Number and possibly other parameters. The server
transitions to the SYN-RECEIVED state.

Client Receives, Processes and Acknowledges Server Acknowledgment: The
client receives the server’'s SYN+ACK message and processes it. The client sends an
ACK message back to the server and then transitions to the ESTABLISHED state.

Server Receives and Processes Client Acknowledgment: The server receives the
client’'s acknowledgment and transitions to the ESTABLISHED state.

The connection is now established and data can be sent by either device.

Since this process involves the exchange of three messages—SYN from client to server,
SYN+ACK from server to client, and ACK from client back to server—it is known as a three-
way handshake. The message exchanges and state transitions for both client and server are
summarized graphically in Figure 125.

Version 1.0 - August 3, 2015 176 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Client

I=

SYN-SENT

v

ESTABLISHED

Wait For Server

Active Open: Create

TCB, Send SYN

Wait for ACK
to SYN

Receive SYN+ACK,
Send ACK

- ®

SYN
Seq Num = 4,567

. ®

ACK
Ack Num = 12,999

Figure 125: TCP Three-Way Handshake for Connection Establishment.

Connection Termination

Server

Passive Open:
Create TCB

Wait For Client

Receive SYN,
Send SYN+ACK

Wait for ACK
to SYN

Receive ACK

rver

I<_I

LISTEN

SYN-RECEIVED

<
<

ESTABLISHED

A TCP connection can remain open for anywhere from a fraction of a second to many days,
depending on the application. Either device can initiate connection termination when it decides
it no longer wishes to communicate. We will assume here that the server initiates termination,
perhaps because it has completed transferring all of the data it has available for the client.
Here’s what happens in this case:

T1.

T2.

T3.

T4.

Server Sends Termination Request to Client: The server sends a TCP message with
the FIN (for “finish”) flag set. It transitions to the FIN-WAIT-1 state. (This message will

usually also have the ACK flag set as well, acknowledging previously-received data, so
it is sometimes called FIN+ACK.)

Client Receives and Acknowledges Termination Request: The client receives the
server’s message and responds with an ACK message. The client transitions to the
CLOSE-WAIT state.

Server Receives Client Acknowledgment: The server receives the ACK and
transitions to the FIN-WAIT-2 state. The server’s side of the connection is now closed,
but it must wait for the client before formally closing the connection.

Client Waits for Application: The client TCP software waits for the application using
the connection to signal that it is done and ready to close. (The server doesn’t do this
since its application is what triggered termination.)

Version 1.0 - August 3, 2015

177

© 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

T5. Client Sends Termination Request to Server: The client sends a FIN message, then
transitions to the LAST-ACK state. (Again, this will often be a FIN+ACK message.)

T6. Server Receives and Acknowledges Termination Request: The server receives the
FIN and responds with an ACK, then transitioning to the TIME-WAIT state.

T7. Client Receives Server Acknowledgment: The client receives the server’s ACK and
transitions to the CLOSED state.

T8. Server Waits and then Closes: The server waits for a specified time (set by the TCP
implementation) to give the client time to receive its ACK. It then also transitions to the
CLOSED state.

This is sometimes called a four-way handshake, though it's really a pair of two-way
handshakes that occur in sequence. It is depicted in Figure 126.

Server Client
Server State Client State
‘ Receive Close
Signal From App, @ Normal Operation
SendFIN | Fn
FIN-WAIT-1 T Receive FIN,
Wait for ACK and Send ACK, v
l FIN From Client Tell App To Close
Recei ACK
FIN-WAIT-2 ve (Wait for App)
Wait for Client FIN #1 App Is Ready To v
Close, Send FIN
LAST-ACK
Receive FIN,)
Selxl ACK #2 Wait for ACK
TIME-WAIT T to FIN

ACK
Receive ACK

<
<«

Wait For Double
Maximum Segment
Life (MSL) Time

wreeeneee G

Figure 126: TCP Connection Termination.

Version 1.0 - August 3, 2015 178 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Part4.4A Load and Analyze TCP Connection Client Script
Let’s start with the client script, which as mentioned earlier will run on EEVB Node A.

» Load 4.4 TCP Handshake Client: You can find this alongside the other lab example
scripts on the Logon Screen, under the | my setups| tab.

You will start in the Messages Editor on the transmit side, where you will see... a lot of
messages! The first one in the list is the most important: it is a generic TCP message
transmitted from the client to the server, and has no custom fields because we are only using
control fields in the header for the handshaking process. The other 12 entries are “diagnostic
messages” that we will use later in this lab to illustrate more completely how the handshaking
works.

» Switch to Receive Side.

There is one receive message, which is the complement of the main transmit message. This is
used to identify transmissions to the client from the server.

» Switch to Application Signals.
A number of application signals are used to control the operation of the client:

e Client State: The current status of the client, which can be CLOSED [0], SYN-SENT [1],
ESTABLISHED [2], CLOSE-WAIT [3] or LAST-ACK [4].

e Client Sequence Number: The client’s current Sequence Number field.

e Server Acknowledgment Number: The number from the last Acknowledgment field
sent to the server.

e Client Default Window Size: The default value for the Window Size field, specifying
the maximum amount of data the client can handle. This is an important parameter in
TCP, but is not actually used in the simulation logic, so you can changed it to any value
you like.

e Connection Closed Timestamp: Used to ensure a delay between closing the last
connection and starting a new one.

e Client Application Close Delay: Specifies the number of seconds that the client waits
in Step T4 before it sends its termination request.

e Entered CLOSE-WAIT Timestamp: Used to ensure the correct amount of time elapses
in Step T8 before the client closes the connection.

e LED Flash Counter: Used to indicate visually the state of the client using an EEVB
LED.

» Switch to Function Blocks.

Version 1.0 - August 3, 2015 179 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

There are six function block scripts in this setup. Five of these implement the client behavior
described in the overview of connection establishment and termination. Each script controls
the operation of the client in a particular state, and its name indicates the transition between
states that occurs each time that script is run to completion. Here are these five scripts and the
step numbers they implement:

e Begin Initiation (CLOSED --> SYN-SENT): Sends the SYN message to the server
(Step E2).

e Complete Initiation (SYN-SENT --> ESTABLISHED): Sends ACK back to server (Step
E4).

e Respond to Server Termination (ESTABLISHED --> CLOSE-WAIT): Receives and
acknowledges the server’s termination request (Step T2).

e Begin Client Termination (CLOSE-WAIT --> LAST-ACK): Waits for the (simulated)
application to close and then starts the client side of connection termination (Steps T4
and T95).

e Complete Client Termination (LAST-ACK --> CLOSED): Receives acknowledgment
of the client’s request and closes the connection (Step T7).

The last script is a special indicator program that allows you to see the value of the Client
State application signal. Every two seconds, this script flashes the node’s LED1 a number of
times equal to the value of that signal. The client will only remain in some states for a fraction
of a second, but others are “stable”. For example, you can use this to easily see if the client
believes it is in the CLOSED state (value of 0) or the ESTABLISHED state (value of 2).

Let’'s send this setup to Node A of the EEVB.
» Send CoreMini to Node A.

As soon as you do this, both LEDs should go dark. The client stays in the CLOSED state until
we initiate a connection, and it has a Client State value of O; the LED indicator function block
therefore doesn’t flash LED1 at all.

We really need both the client and server halves running for this simulation to be meaningful,
so we won'’t actually do anything else until we examine and download the server script as well.
Part4.4B Load and Analyze TCP Connection Server Script

The server script is similar to the client one, but not exactly the same since you can see that
both connection establishment and termination are asymmetric.

» Load 4.4 TCP Handshake Server.

Again we begin in the Messages Editor on the transmit side, and again we have a lot of
messages. As with the client, the primary message is the first one, while 13 others are used for
the optional diagnostic feature discussed later in the lab.

Version 1.0 - August 3, 2015 180 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Switch to Receive Side.

This script is the one we will leave running within VSpy to monitor the message transactions
between the two EEVB nodes. Accordingly, we need copies of all of the transmit messages for
both the server and client setups here, for a total of 27.

» Switch to Application Signals.

The application signals are similar to those used in the client script, though again there are
differences due to the two sides not behaving in exactly the same way:

e Server State: The current logical status of the server: CLOSED [0], LISTEN [1], SYN-
RECEIVED [2], ESTABLISHED [3], FIN-WAIT-1 [4], FIN-WAIT-2 [5] or TIME-WAIT [6] .

e Server Sequence Number: The server’s current Sequence Number field value.

e Client Acknowledgment Number: The number from the last Acknowledgment field
sent to the client.

e Server Default Window Size: The default value for the Window Size field, specifying
the maximum amount of data the server can handle.

e Server Connection Close Delay: The number of seconds to wait between the TIME-
WAIT and CLOSED states.

e Client Application Close Delay: How long the client waits in Step T4 before it sends its
termination request.

e Entered TIME-WAIT Timestamp: Marks the time the TIME-WAIT state began so the
correct wait duration is applied.

e LED Flash Counter: Used to indicate visually the state of the client using an EEVB
LED.

» Switch to Function Blocks.

The function block scripts in this setup are crafted in much the same way as they were in the
client setup. Again, each block performs the necessary operations for the server in a particular
state before changing to a different one, and the names reflect the state transitions. There are
more scripts than for the client because there are more server states. The last script shows the
value of the Server State application signal in Node B LED1.

The scripts that define the operation of the server are as follows:

e Prepare for Initiation (CLOSED --> LISTEN): Gets the server ready to receive
incoming connection requests (Step E1).

e Respond to Initiation (LISTEN --> SYN-RECEIVED): Responds to the server’'s SYN
with a SYN+ACK (Step E3).

Version 1.0 - August 3, 2015 181 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

e Complete Initiation (SYN-RECEIVED --> ESTABLISHED): Receives the client’s
acknowledgment and establishes the connection (Step E5).

e Begin Server Termination (ESTABLISHED --> FIN-WAIT-1): Starts the process of
terminating the connection from the server side (Step T1).

e Complete Server Termination (FIN-WAIT-1 --> FIN-WAIT-2): The server receives
acknowledgment of its termination request, now waits for the client side to close (Step
T3).

e Respond to Client Termination (FIN-WAIT-2 --> TIME-WAIT): Server responds to the
client’s termination request (Step T6).

e Wait to Close Connection (TIME-WAIT --> CLOSED): Server waits and then closes
the connection (Step T8).

The last script is a status indicator as on the client. It will normally show the server in the
CLOSED state (no flashes, value of 0), LISTEN state (1 flash) or ESTABLISHED state (3 flashes).

We’ll now send this setup to EEVB Node B.
» Send CoreMini to Node B.

You should see this node’s LED1 begin to flash once every two seconds shortly after the
CoreMini is received. The server automatically transitions to the LISTEN state so it is ready to
receive incoming connection requests from the client.

Part 4.4C Observe TCP Connection Establishment Handshake

Let’s now run our simulation and see how it works.

First, recall those extra message definitions and our mention of a special diagnostic feature?
We want to begin with that mode off as it is easier to start by looking at just the basic message
exchange. The sending of these extra messages is controlled by the potentiometers on each
node: they are triggered by the dial being in the lower half of its range (0 to 2047) and disabled
if it is in its upper half (2048 to 4095).

» Turn Both Node Potentiometers to Maximum Value: Turn the dials clockwise until
they are at or near their maximumes.

Now let’s get ready to observe the messages coming from the two nodes.
» Switch to Messages View.

» Set Message Filter: Enter TCP in the Description filter field to suppress messages we
aren’t interested in.

» Turn Scroll Mode On (If Necessary).

» Ensure that Flags Column is Visible: This may require widening the Vehicle Spy
window or changing column widths.

Version 1.0 - August 3, 2015 182 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

» Go Online.
You won'’t see anything at first, because we must manually trigger the connection process.
» Press the Node A Pushbutton.

Three messages will appear very quickly, separated by only a few milliseconds (Figure 127).
These are the messages in the connection establishment “three-way handshake”: SYN
from client to server, SYN+ACK from server to client and ACK from client to server, as

seen in the Flags column. Note also the interaction of the Seq# and Ack# fields: the client
selects a random sequence number in its SYN message, and the server acknowledges it

by incrementing the value and sending it back in the Ack# field of its SYN+ACK. The same
happens with the server’s sequence number in the SYN+ACK and ACK messages.

The client and server are now both in the ESTABLISHED state; Node A's LED1 flashes twice,
and Node B’s LED2 flashes three times.

Line Time Tx |Er |Description Source SrcPort |Destination |DstPort |EtherType|Protocal |VLAN |Len |Seq# Ack# Window |Flags Network
Filter TCP
oha 1 TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 80002 IPv4 TCP &0 172641 1] 1024 SYM Ethernet
oha 2 4,865 ms TCP Segment - Server to Client 10.0.0.2 60002 10.0.0.1 80001 IPv4 TCP &0 159138 172542 2043 ACK,SYN Ethernet
oha 3 3.110ms TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 60002 IPu4 TCP 60 172642 169139 1024 ACK Ethernet

Figure 127: TCP Connection Simulation Establishment Handshake.

Pay close attention to VSpy as we now close the connection.
» Press the Node B Pushbutton.

You should see four messages appear in two groups (messages 4 to 7 in Figure 128). The first
is the server’s connection termination exchange (Steps T1 to T3) and the second is the client’s
(Steps T5 to T7). Between these is the application close delay, which in this simulation is 3
seconds (Step T4); you can see this in the Time field for message 6 in the figure. The server
wait time before closing the connection (Step T8) can sometimes be observed by watching

the Node B LED, which should flash 6 times (TIME-WAIT state) at least once before the
connection closes. The server will then quickly transition back to LISTEN so a new connection
can be established again (one flash every two seconds).

Line Time Tx |Er |Description Source SrcPart |Destination |DstPort |EtherType|Protocol |VLAN |Len |Seq# Ack# Window |Flags Network
Filter TCP
oo 1 TCP Segment - Client to Server 10,0.0.1 60001 10.0.0.2 50002 IPv4 TCP 60 172641 a 1024 SYN Ethernet
ova 2 4.866 ms TCP Segment - Server to Client 10,0.0.2 60002 10.0.0.1 50001 IPvs TCP &0 169138 172642 2048 ACK,5YN Ethernet
o 3 3.110ms TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 80002 IPv4 TCP &0 172642 169139 1024 ACK Ethernet
oo 4 26:06.372514 TCP Segment - Server to Client 10.0.0.2 60002 10.0.0.1 60001 IPv4 TCP 60 169139 172642 2048 ACK,FIN Ethernet
oo 5 24954 ms TCP Segment - Client to Server 10,0.0.1 60001 10.0.0.2 50002 IPv4 TCP 60 172642 165140 1024 ACK Ethernet
v] 3.003855s TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 50002 IPv4 TCP 60 172042 169140 1024 ACK,FIN Ethernet
oo 7 2,506 ms TCP Segment - Server to Client 10,0.0.2 60002 10.0.0.1 50001 IPv4 TCP &0 169140 172643 2048 ACK Ethernet

Figure 128: TCP Connection Simulation Establishment and Termination Messages.

Version 1.0 - August 3, 2015 183 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Note: It is possible in some cases to end up with the two nodes

in incompatible states, which will cause the simulation to stop
working properly. This can be corrected by pressing the reset buttons
on both nodes, which will cause their scripts to start over again in the
CLOSED state so they function correctly.

Part4.4D Observe Handshake Details Using Diagnostic Messages

Okay, let's now come back to all those extra messages that we told you to ignore earlier in

the lab. The purpose of these messages is to help you see exactly what is happening as a
connection is created or torn down in the client, the server, or both. The extra messages are
sent for each major occurrence within either device, such as receiving a message, transmitting
a message, or commencing or completing a delay.

Let’'s start with the client.

» Turn Node A Potentiometer to Minimum Value: Turn the dial counter-clockwise until it
is near the minimum.

» Clear the Messages Display: Press the button.
» Press the Node A Pushbutton.

You will now see the same three-way connection establishment handshake as before, but with
extra messages for each major action taken by the client.

» Press the Node B Pushbutton.

The termination closes, as before, and again extra messages appear tracing the client’s
behavior. The full exchange with the client’s 12 diagnostic transmissions is in Figure 129.

|Lir|e |'ﬁme |Tx |Er |Descripﬁun ‘ Source |Src Fort ‘ Destination ‘ DstPort |EtherType | Protocol |VL»‘-\N ‘ Len |Seq¢ | Ack# ‘ Window |F\ags
e I I A - 1 1 1 [[T 11 T T 1
oo 1 TCP Client: Start connection establishment 10.0.0.1 50001 255.255.25...1 P4 TCP a0 0 a 65535
oo 2 2,998 ms TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 50002 IPv4 TCP 60 172641 1] 1024 SYM
oo 3 lps TCP Client: Sent SYN (—» SYN-SENT) 10.0.0.1 60001 255.255.25...2 Pvd TCP 80 0 1] 65535
o%o 4 4.182ms TCP Segment - Server to Client 10.0.0.2 50002 10.0.0.1 60001 IPv4 TCP 680 669006 172642 2048 ACK,5YN
oha 5 1789 ms TCP Client: Received SYN+ACK 10.0.0.1 80001 255,255.25...3 IPv4 TCP 80 0] 65535
oha 6 2.033ms TCP Segment - Client to Server 10.0.0.1 80001 10.0.0.2 60002 IPv4 TCP &0 172642 669007 1024 ACK
oha 7 996 ps TCP Client: Sent ACK (—» ESTABLISHED) 10.0.0.1 80001 255,255.25...4 IPv4 TCP 60 0 1] 65535
oho 8 80ps TCP Client: Connection established 10.0.0.1 80001 255.255.25...5 IPv4 TCP 80 0 1] 65535
oho 9 2.592983 s TCP Segment - Server to Client 10.0.0.2 60002 10.0.0.1 60001 IPv4 TCP 60 659007 172642 2048 ACK,FIN
oho 10 791ps TCP Client: Received FIN+ACK 10.0.0.1 &0001 255.255.25...6 IPv4 TCP &0 0 o 65535
oo 11 2.990 ms TCP Segment - Client to Server 10.0.0.1 50001 10.0.0.2 60002 TPv4 TCP &0 172642 669008 1024 ACK
oo 12 2ps TCP Client: Sent ACK (—>» CLOSE-WAIT) 10.0.0.1 50001 255.255.25...7 P4 TCP a0 0 a 65535
oo 13 1.043 ms TCP Client: Start delay for application close 10.0.0.1 60001 255,255,25...8 IPv4 TCP a0 0 a 655535
4o 14 2ps TCP Client: Start dient connection termination 10.0.0.1 60001 255.255.25...9 IPv4 TCP &0 0 a 65535
o%o 15 980 ps TCP Segment - Client to Server 10.0.0.1 50001 10.0.0.2 60002 IPv4 TCP 60 172642 669008 1024 ACK,FIN
oha 16 968 ps TCP Client: Sent FIN+ACK (—> LAST-ACK) 10.0.0.1 80001 255,255.25...10 IPv4 TCP 80 0] 65535
oha 17 2,196 ms TCP Segment - Server to Client 10.0.0.2 60002 10.0.0.1 60001 IPv4 TCP 60 659008 172643 2048 ACK
oha 18 865 s TCP Client: Received ACK 10.0.0.1 80001 255,255.25...11 IPv4 TCP 60 0 1] 65535
oho 19 1.963 ms TCP Client: Client connection dosed (—> CLOSED) 10.0.0.1 60001 255.255.25...12 IPv4 TCP 80 0 1] 65535

Figure 129: TCP Connection Handshaking with Extra Client Status Messages.

Version 1.0 - August 3, 2015 184 © 2015 Intrepid Control Systems, Inc.

Ethernet EVB Lab Manual

Now let’s repeat this to show the server side of the transactions.
» Turn Node A Potentiometer to Maximum Value.
» Turn Node B Potentiometer to Minimum Value.
» Clear the Messages Display: Press the button.
» Press the Node A Pushbutton.
» Press the Node B Pushbutton.

The results can be seen in Figure 130.

Line Time Tx |Er |Description Source Src Port |Destination |DstPort |EtherType |Protocol |VLAM |Len |Seq# Ack# Window |Flags
Filter TCP
oo 1 TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 60002 IPv4 TCP 60 43161 1] 1024 SYN
oo 2 1.060 ms TCP Server: Received SYN 10.0.0.2 60002 255.255.25...1002 IPv4 TCP &0 0 a 65535
oo 3 3.065 ms TCP Segment - Server to Client 10.0.0,2 &0002 10.0.0.1 50001 IPv4 TCP 80 667252 43162 2048 ACK,SYN
oo 4 929 ps TCP Server: Sent SYM+ACK (—= SYN-RECEIVED) 10.0.0,2 60002 255.255.25...1003 IPv4 TCP 60 0 1] 65535
oo 5 2936 ms TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 60002 IPv4 TCP 60 43162 667253 1024 ACK
oo B8 95 ps TCP Server: Received ACK (—> ESTABLISHED) 10.0.0.2 80002 255.255.25...1004 IPv4 TCP &80 0 o 65535
aa 7 1.992ms TCP Server: Connection established 10.0.0.2 60002 255,255.25,,,1005 IPv4 TCP 80 0 0 65535
o%a 8 3.331839 s TCFP Server: Start server connection termination 10.0.0.2 60002 255.255.25...1008 IPv4 TCP 60 0 [t} 65535
oo 9 1.957 ms TCP Segment - Server to Client 10.0.0.2 80002 10.0.0.1 60001 IPv4 TCP &80 87253 43162 2048 ACK,FIM
oo 10 993 ps TCP Server: Sent FIN4ACK (--= FIN-WAIT-1) 10.0.0,2 &0002 255,255.25...1007 IPv4 TCP 80 0 1) 65535
oo 11 1925 ms TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 60002 IPv4 TCP 60 43162 667254 1024 ACK
oo 12 1.076 ms TCP Server: Received ACK (—> FIN-WAIT-2) 10.0.0.2 60002 255.255.25...1008 IPv4 TCP &0 0 a 65535
oo 13 3.0017s0 5 TCP Segment - Client to Server 10.0.0.1 60001 10.0.0.2 50002 IPv4 TCP 80 43162 667254 1024 ACK,FIM
oo 14 11lps TCP Server: Received FIN+ACK 10.0.0,2 60002 255.255.25...1009 IPv4 TCP 60 0 1] 65535
oo 15 3.003 ms TCP Segment - Server to Client 10.0.0,2 60002 10.0.0.1 60001 IPv4 TCP 60 667254 43163 2048 ACK
oo 16 950 ps TCP Server: Sent ACK (- TIME-WAIT) 10.0.0,2 80002 255.255.25...1010 IPv4 TCP 80 0 1] 65535
aka 17 66 s TCP Server: Start server close delay 10.0.0.2 60002 255.255.25...1011 IPv4 TCP 50 0 1} 65535
oo 18 2.961ms TCP Server: Server dose delay completed 10.0.0,2 60002 255,255.25...1012 IPv4 TCP 60 0 a 65535
oo 19 1,970 ms TCP Server: Server connection doged (--»> CLOSED) 10.0.0.2 60002 255.255.25...1013 IPv4 TCP 80 0 i) 65535
oo 20 2,002 ms TCP Server: Passive open (- LISTEN) 10.0.0,2 80002 255.255.25...1001 IPv4 TCP 80 0 1] 65535

Figure 130: TCP Connection Handshaking with Extra Server Status Messages.

You can of course turn diagnostics on for both nodes, though the result is a lot of client and
server messages intermixed, which is hard to decipher.

» Go Offline.

Congratulations, you’ve completed the Intrepid Ethernet EVB Lab Manual!

Version 1.0 - August 3, 2015 185 © 2015 Intrepid Control Systems, Inc.

	Introduction to the Intrepid Ethernet EVB Lab Manual
	Section 1	Basic Ethernet Traffic Analysis and Frame Transmission
	Lab 1.1	Analyzing Ethernet Traffic Using Vehicle Spy 3
	Lab 1.2	Making Use of Advanced Vehicle Spy 3 Analysis Functionality
	Lab 1.3	Using the Messages Editor and a Function Block Script to Transmit Raw Ethernet Frames
	Lab 1.4	Reviewing and Modifying Ethernet Templates and Setup Files
	Lab 1.5	Setting Up a Transmission and Response Exchange Using Ethernet Frames
	Lab 1.6	Adding Intelligence and Control to Ethernet Transmission and Response Exchanges

	Section 2	Experiments with the TCP/IP Address Resolution Protocol (ARP) Over Ethernet
	Lab 2.1	Observing ARP in Action
	Lab 2.2	Sending Periodic ARP Requests from EEVB Node A
	Lab 2.3	Using Application Signals to Set up an Intelligent ARP Request/Reply Exchange
	Lab 2.4	Controlling ARP Request and Reply Operation Using EEVB Inputs
	Lab 2.5	Setting Up an ARP Request/Reply Exchange Between the EEVB and PC
	Lab 2.6	Manual ARP Request from PC to EEVB Using RAD-Moon (Optional)

	Section 3	Simulations Using TCP/IP Internet Protocol (IP) and Internet Control Message Protocol (ICMP) Messages
	Lab 3.1	Examining IP and ICMP Messages and Some Common Network Utilities
	Lab 3.2	Creating and Transmitting Custom IP Datagrams
	Lab 3.3	Using Signal Lists and Plots to Display Data and Adding a Second Simultaneous CoreMini Script for Node Synchronization
	Lab 3.4	Simulating the Ping Utility and Monitoring Ping Exchanges Using a Graphical Panel
	Lab 3.5	Manual Ping from PC to EEVB Using RAD-Moon
	Lab 3.6	Simulating a Routing Problem with ICMP Time Exceeded Messages

	Section 4	TCP/IP User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) Data Exchanges
	Lab 4.1	Analyzing UDP and TCP Messages and Exploring the TCP Column Display
	Lab 4.2	Transmitting Input/Output Data Using UDP
	Lab 4.3	Creating a Simple Custom UDP Message Exchange Protocol
	Lab 4.4	Simulating TCP Connection Establishment and Termination

